In recent years, Modular Multilevel Converters (MMC) have been widely used in medium/high voltage applications, such as high-voltage direct current (HVDC) systems, and pointed out as a promising solution for battery energy storage systems (BESS) and static synchronous compensators (STATCOM), according to recent research. Especially, in BESS application, the current and voltage conditions in the battery bank are fundamental to evaluate thermal dynamic, reliability, and lifetime. However, depending on the voltage and power levels, MMC is based on hundreds of SMs. Thus, the full MMC system implementation can be costly and complex for operational and reliability tests. In this sense, the so-called mission profile emulators (MPE), have been developed to emulate the voltage and current in an SM and batteries. The MPE eliminates the need to implement the full converter and contributes to more agile tests of the MMC dynamics, resulting in the design of more reliable converters. In addition, the MPE can be used to obtain battery current and arm current spectrum similar to those obtained in MMC. This work presents a detailed design and implementation of the MPE for an MMC-based BESS. The MPE is validated in simulations and in a reduced-scale prototype.
Power electronic converters are the subject of several studies and applications. Knowledge about those converters is essential for several technical and undergraduate courses in the field of Electrical Engineering and related areas.The presence of converter modules in laboratories can be beneficial for experimental validations in academic research and educational purposes, for allowing students to have practical contact with different converter topologies and applications. However, the commercially available power converters are generally manufactured for specific applications, with poor versatility and high cost, when applied for academic purposes. For this reason, several laboratories propose the design of versatile converters, mainly for multilevel converter research. Nevertheless, most of these projects present module designs based on half-bridge topology due to their low cost. Therefore, this project topology requires more modules to operate as topologies based on a full-bridge converter. Besides, modules based on full-bridge topology can also work in a half-bridge configuration. Thus, this work presents the design of full-bridge modules capable of operating as different types of converters, as well as the project of the dc-link voltage measurement, isolated power supply and bypass circuits. Moreover, this work addresses the heatsink choice, the thermal evaluation for the semiconductor devices and the realization of galvanic isolation between the signal and power circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.