Abstract-We study distributed optimization problems when N nodes minimize the sum of their individual costs subject to a common vector variable. The costs are convex, have Lipschitz continuous gradient (with constant L), and bounded gradient. We propose two fast distributed gradient algorithms based on the centralized Nesterov gradient algorithm and establish their convergence rates in terms of the per-node communications K and the per-node gradient evaluations k. Our first method, Distributed Nesterov Gradient, achieves rates O (log K/K) and O (log k/k).
Abstract-We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.Index Terms-Distributed algorithms, alternating direction method of multipliers, sensor networks.
Abstract-We propose a distributed algorithm for solving the optimization problem Basis Pursuit (BP). BP finds the least -norm solution of the underdetermined linear system and is used, for example, in compressed sensing for reconstruction. Our algorithm solves BP on a distributed platform such as a sensor network, and is designed to minimize the communication between nodes. The algorithm only requires the network to be connected, has no notion of a central processing node, and no node has access to the entire matrix at any time. We consider two scenarios in which either the columns or the rows of are distributed among the compute nodes. Our algorithm, named D-ADMM, is a decentralized implementation of the alternating direction method of multipliers. We show through numerical simulation that our algorithm requires considerably less communications between the nodes than the state-of-the-art algorithms.
Abstract-We study distributed optimization where nodes cooperatively minimize the sum of their individual, locally known, convex costs fi(x)'s, x ∈ R d is global. Distributed augmented Lagrangian (AL) methods have good empirical performance on several signal processing and learning applications, but there is limited understanding of their convergence rates and how it depends on the underlying network. This paper establishes globally linear (geometric) convergence rates of a class of deterministic and randomized distributed AL methods, when the fi's are twice continuously differentiable and have a bounded Hessian. We give explicit dependence of the convergence rates on the underlying network parameters. Simulations illustrate our analytical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.