In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to zero. The latter assumption can be dropped when the function is assumed to be pseudoconvex. We also obtain convergence results for quasimonotone variational inequalities, which are more general than monotone ones.
In this paper we present an abstract convergence analysis of inexact descent methods in Riemannian context for functions satisfying Kurdyka-Lojasiewicz inequality. In particular, without any restrictive assumption about the sign of the sectional curvature of the manifold, we obtain full convergence of a bounded sequence generated by the proximal point method, in the case that the objective function is nonsmooth and nonconvex, and the subproblems are determined by a quasi distance which does not necessarily coincide with the Riemannian distance. Moreover, if the objective function is C 1 with L-Lipschitz gradient, not necessarily convex, but satisfying Kurdyka-Lojasiewicz inequality, full convergence of a bounded sequence generated by the steepest descent method is obtained.
We use the proximal point method with the ϕ-divergence given by ϕ(t) = t−log t− 1 for the minimization of quasiconvex functions subject to nonnegativity constraints. We establish that the sequence generated by our algorithm is well-defined in the sense that it exists and it is not cyclical. Without any assumption of boundedness level to the objective function, we obtain that the sequence converges to a stationary point. We also prove that when the regularization parameters go to zero, the sequence converges to an optimal solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.