Stature, FM and FFM are the best combination for normalizing LVM in adolescent boys; when body composition is not available, an indicator of biological maturity should be included with stature.
Background: The aim of the study was to examine the contribution of chronological age (CA), skeletal maturation, training experience and concurrent body size descriptors, to inter-individual variance in left ventricular mass (LVM) among female adolescent soccer players. Methods: The sample included 228 female soccer players 11.8-17.1 years. Training experience defined as years of participation in competitive soccer (range 2-9 years), was obtained by interview. Stature, body mass and skinfolds (triceps, medial calf) were measured. Fat mass was estimated; Fat-free mass was derived. LVM was assessed by echocardiography. Skeletal maturity status was as the difference of skeletal age (SA, Fels method) minus CA. Results: Fat-free mass was the most prominent single predictor of LVM (R 2 = 36.6%). It was associated with an allometric coefficient close to linearity (k = 0.924, 95%CI: 0.737 to 1.112). A significant multiplicative allometric model including body mass, fat-free mass, CA, training experience and skeletal maturity status was also obtained (R = 0.684; R 2 = 46.2%). Conclusion: Stature has limitations as a valid size descriptor of LVM. Body mass, fat-free mass, training experience, CA, body mass and skeletal maturity status were relevant factors contributing to inter-individual variability in LVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.