This study evaluates the contributions of age, growth, skeletal maturation, playing position and training to longitudinal changes in functional and skill performance in male youth soccer. Players were annually followed over 5 years (n = 83, 4.4 measurements per player). Composite scores for functional and skill domains were calculated to provide an overall estimate of performance. Players were also classified by maturity status and playing position at baseline. After testing for multicollinearity, two-level multilevel (longitudinal) regression models were obtained for functional and skill composite scores. The scores improved with age and training. Body mass was an additional predictor in both models [functional (late maturing): 13.48 + 1.05 × centered on chronological age (CA)-0.01 × centered CA(2)-0.19 × fat mass (FM) + 0.004 × annual volume training-1.04 × dribbling speed; skills (defenders): 7.62 + 0.62 × centered CA-0.06 × centered CA(2) + 0.04 × fat-free mass-0.03 x FM + 0.005 × annual volume training-0.19 × repeated-sprint ability + 0.02 × aerobic endurance]. Skeletal maturity status was a significant predictor of functional capacities and playing position of skill performance. Sound accuracy of each multilevel model was demonstrated on an independent cross-sectional sample (n = 52).
This study investigated the influence of chronological (CA) and skeletal ages (SA), anthropometry, aerobic endurance and lower limb explosive strength on developmental changes in repeated-sprint ability (RSA) in soccer players aged 11-17 years. Participants were annually followed over 5 years, resulting in 366 measurements. Multilevel regression modelling analysed longitudinal data aligned by CA and SA (Model 1 and 2, respectively). After diagnosing for multicollinearity, it was possible to predict RSA with 2-level hierarchical models [Model 1 (CA as Level 2 predictor): Log-Likelihood=1,515.29, p<0.01; Model 2 (SA as Level 2 predictor): Log-Likelihood=1,513.89, p<0.01]. Estimating sum of sprints for young soccer players are given by equations: sum of sprints=84.47 - 1.82 × CA + 0.03 × CA2 - 0.05 × aerobic endurance - 0.10 × lower limb explosive strength -0.09 × fat-free mass + 0.13 × fat mass (Model 1); 73.58 - 0.43 × SA - 0.05 × aerobic endurance - 0.10 × lower limb explosive strength - 0.08 × fat-free mass - 0.45 × training experience + 0.13 × fat mass (Model 2). The models produced performance curves that may be used to estimate individual performance across adolescent years. Finally, the validity of each model was confirmed based on corresponding measurements taken on an independent cross-sectional sample.
The aim of the this study was to investigate the development of explosive leg power by using 2 similar jumping protocols (countermovement jump and standing broad jump) in 555 Belgian, high-level young soccer players, aged between 7 and 20 years. The total sample was divided into 3 longitudinal samples related to growth and maturation (pre-teenchildhood: (6-10 years;), early adolescence: (11-16 years;) and late adolescence: (17-20 years)), and 6 multilevel regression models were obtained. Generally, both jumping protocols emphasized that chronological age, body size dimensions (by means of fat mass in the late childhood and early adolescence groups, fat-free mass in the late adolescence group and stature--(not for CMJ in late childhood group) and fat mass in the late childhood and early adolescence groups, and fat-free mass in the late adolescence group) and motor coordination (one item of a 3-component test battery) are longitudinal predictors of explosive leg power from childhood to young adulthood. The contribution of maturational status was not investigated in this study. The present findings highlight the importance of including non-specific motor coordination in soccer talent development programs.
This study compared variation in size, function and sport-specific technical skills of youth soccer players associated with differences in biological maturity status. 60 male soccer players of under-14 (U14) and under-17 (U17) categories were submitted to anthropometric and body composition measurements as well as motor and soccer-specific technical skill tests. Skeletal maturity was determined by skeletal age. Athletes of both categories were classified as early, on-time or late-maturing, according to the difference between chronological age and skeletal age. Body mass and height were lower in the late athletes, independent of category (P<0.01). Differences in adiposity were found only between athletes of the U14 (late
Girls had higher disability and lower QoL than boys in the domains of physical and emotional functioning, psychosocial health, and physical health summary scores, and on the total PedsQL score; however, similar school backpack weight was reported. Participants with LBP revealed lower physical functioning and physical health summary score, yet had similar school backpack weight to those without LBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.