Using both the proton selective vibrating electrode to probe the extracellular currents and ratiometric wide-field fluorescence microscopy with the indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran to image the intracellular pH, we have examined the distribution and activity of protons (H+) associated with pollen tube growth. The intracellular images reveal that lily pollen tubes possess a constitutive alkaline band at the base of the clear zone and an acidic domain at the extreme apex. The extracellular observations, in close agreement, show a proton influx at the extreme apex of the pollen tube and an efflux in the region that corresponds to the position of the alkaline band. The ability to detect the intracellular pH gradient is strongly dependent on the concentration of exogenous buffers in the cytoplasm. Thus, even the indicator dye, if introduced at levels estimated to be of 1.0 μM or greater, will dissipate the gradient, possibly through shuttle buffering. The apical acidic domain correlates closely with the process of growth, and thus may play a direct role, possibly in facilitating vesicle movement and exocytosis. The alkaline band correlates with the position of the reverse fountain streaming at the base of the clear zone, and may participate in the regulation of actin filament formation through the modulation of pH-sensitive actin binding proteins. These studies not only demonstrate that proton gradients exist, but that they may be intimately associated with polarized pollen tube growth.
The occurrence of oscillatory behaviours in living cells can be viewed as a visible consequence of stable, regulatory homeostatic cycles. Therefore, they may be used as experimental windows on the underlying physiological mechanisms. Recent studies show that growing pollen tubes are an excellent biological model for these purposes. They unite experimental simplicity with clear oscillatory patterns of both structural and temporal features, most being measurable during real-time in live cells. There is evidence that these cellular oscillators involve an integrated input of plasma membrane ion fluxes, and a cytosolic choreography of protons, calcium and, most likely, potassium and chloride. In turn, these can create positive feedback regulation loops that are able to generate and self-sustain a number of spatial and temporal patterns. Other features, including cell wall assembly and rheology, turgor, and the cytoskeleton, play important roles and are targets or modulators of ion dynamics. Many of these features have similarities with other cell types, notably with apical-growing cells. Pollen tubes may thus serve as a powerful model for exploring the basis of cell growth and morphogenesis. BioEssays 23:86-94, 2001.
The occurrence of oscillatory behaviours in living cells can be viewed as a visible consequence of stable, regulatory homeostatic cycles. Therefore, they may be used as experimental windows on the underlying physiological mechanisms. Recent studies show that growing pollen tubes are an excellent biological model for these purposes. They unite experimental simplicity with clear oscillatory patterns of both structural and temporal features, most being measurable during real‐time in live cells. There is evidence that these cellular oscillators involve an integrated input of plasma membrane ion fluxes, and a cytosolic choreography of protons, calcium and, most likely, potassium and chloride. In turn, these can create positive feedback regulation loops that are able to generate and self‐sustain a number of spatial and temporal patterns. Other features, including cell wall assembly and rheology, turgor, and the cytoskeleton, play important roles and are targets or modulators of ion dynamics. Many of these features have similarities with other cell types, notably with apical‐growing cells. Pollen tubes may thus serve as a powerful model for exploring the basis of cell growth and morphogenesis. BioEssays 23:86–94, 2001. © 2001 John Wiley & Sons, Inc.
We show that stationary wave solutions of reaction-diffusion equations obey Snell's law of refraction. Refraction occurs at the interface of media where local kinetics have different reaction rates and the same steady state. In particular, we show that the apparent reflection or back refraction observed in experiments is also derived from Snell's law. [S0031-9007(98)06287-5]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.