Ultra-high-performance concrete (UHPC) results from the mixture of several constituents, leading to a highly complex material in both, fresh and hardened state. The higher number of constituents, together with a higher number of possible combinations, relative proportioning and characteristics, makes the behavior of this type of concrete more difficult to predict. The objective of the research is to build four analytical models, based on artificial neural networks (ANN), to predict the 1-day, 7-day, and 28-day compressive strengths and slump flow. Recycled glass powder milled to different particle size, fluid catalytic cracking residue (FCC) and different particle size limestone powder was used as partial replacements for Portland cement and silica fume. The ANN models predicted the 1-day, 7day, and 28-day compressive strengths and slump flow of the test set with prediction error values (RMSE) of 2.400 MPa, 2.638 MPa, 2.064 MPa and 7.245 mm respectively. The results indicated that the developed ANN models are an efficient tool for predicting the slump flow and compressive strengths of UHPC while incorporating silica fume, limestone powder, recycled glass powder and FCC.
El objetivo principal de esta investigación es desarrollar una mezcla optimizada de concreto de polvos reactivos (RPC) que contenga materiales cementícios suplementarios (SCM), como la escoria siderúrgica de arco eléctrico (EASF) y el polvo de vidrio reciclado (RGP) entre otros, utilizando el diseño factorial. Se calcularon diferentes regresiones polinómicas para predecir con precisión las variables respuesta (flujo estático y resistencia a compresión a distintas edades) en función de los factores considerados. A través de un algoritmo multiobjetivo, se determinó la mezcla que alcance la resistencia y flujo estático adecuados con un contenido mínimo de cemento. La verificación experimental de esta optimización matemática mostró que con 621 kg/m3 de cemento ASTM Tipo HE, y un contenido máximo de 100 kg/m3 de humo de sílice, se puede alcanzar una resistencia a compresión superior a los 150 MPa en un concreto, además, autocompactante.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.