A Penning-trap facility for high-precision mass spectrometry based on a novel detection method has been built. This method consists in measuring motional frequencies of singly-charged ions trapped in strong magnetic fields through the fluorescence photons from laser-cooled 40 Ca + ions, to overcome limitations faced in electronic single-ion detection techniques. The key element of this facility is an open-ring Penning trap coupled upstream to a preparation Penning trap similar to those used at Radioactive Ion Beam facilities. Here we present a full characterization of the trap and demonstrate motional frequency measurements of trapped ions stored by applying external radiofrequency fields in resonance with the ions' eigenmotions, in combination with time-of-flight identification. The infrastructure developed to observe the fluorescence photons from 40 Ca + , comprising the 12 laser beams and the optical system to register the image in a high-sensitive CCD sensor, has been proved by taking images of the trapped and cooled 40 Ca + ions. This demonstrates the functionality of the proposed laser-based mass-spectrometry technique, providing a unique platform for precision experiments with implications in different fields of physics.
In this article, the dynamics of an unbalanced two-ion crystal comprising the 'target' and the 'sensor' ions confined in a Penning trap has been studied. First, the low amplitude regime is addressed. In this regime, the overall potential including the Coulomb repulsion between the ions can be considered harmonic and the axial, magnetron and reduced-cyclotron modes split up into the so-called 'stretch' and 'common' modes, that are generalizations of the well-known 'breathing' and 'center-of-mass' motions of a balanced crystal made of two ions. By measuring the frequency modes of the crystal and the sensor ion eigenfrequencies using optical detection, it will be possible to determine the target ion's free-cyclotron frequency. The measurement scheme is described and the non-harmonicity of the Coulomb interaction is discussed since this might cause large systematic effects.I. * mjgutierrez@ugr.es.; This work is part of the PhD thesis of M.J. Gutiérrez. † danielrodriguez@ugr.es
Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluorescence signal obtained by collecting the photons emitted by a trapped ion cloud, we show a detection limit below 110 ions. Adding the crystal, the electrical signal increases by a factor of about 30 at room temperature, which combined with the measured equivalent resistance and voltage noise, proves the feasibility of the system to reach single-ion sensitivity at 4 K.
We have studied the dynamics of one and two laser-cooled trapped 40 Ca + ions by applying electric fields of different nature along the axial direction of the trap, namely, driving the motion with a harmonic dipolar field, or with white noise. These two types of driving induce distinct motional states of the axial modes; a coherent oscillation with the dipolar field, or an enhanced Brownian motion due to an additional contribution to the heating rate from the electric noise. In both scenarios, the sensitivity of an isolated ion and a laser-cooled two-ion crystal has been evaluated and compared. The analysis and understanding of this dynamics is important towards the implementation of a novel Penning-trap mass-spectroscopy technique based on optical detection, aiming at improving precision and sensitivity.
We report on cyclotron frequency measurements on trapped 206,207Pb+ ions by means of the non-destructive Fourier-transform ion-cyclotron-resonance technique at room temperature. In a proof-of-principle experiment using a quartz crystal instead of a coil as a resonator, we have alternately carried out cyclotron frequency measurements for 206Pb+ and 207Pb+ with the sideband coupling method to obtain 21 cyclotron-frequency ratios with a statistical uncertainty of 6 × 10−7. The mean frequency ratio R¯ deviates by about 2σ from the value deduced from the masses reported in the latest Atomic Mass Evaluation. We anticipate that this shift is due to the ion–ion interaction between the simultaneously trapped ions (≈100) and will decrease to a negligible level once we reach single-ion sensitivity. The compactness of such a crystal makes this approach promising for direct Penning-trap mass measurements on heavy and superheavy elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.