Recent fMRI studies have suggested that multiple sclerosis (MS) patients show adaptive cortical changes (i.e., compensatory mechanisms) during motor and cognitive tasks to limit the clinical impact of tissue injury. In this study, we investigated the activation pattern during the auditory n-back working memory (WM) paradigm in a group of 17 MS patients and 10 healthy controls with preserved performance in WM tasks. Compared with healthy controls, MS patients showed significantly greater bilateral activation in prefrontal cortex (BA 44), and the insula. These findings were similar to those obtained in previous studies showing that compensatory mechanisms during WM tasks in MS may be based on the use of prefrontal areas adjacent to those involved in the task.
Alzheimer's disease (AD) is a neurological disorder that creates neurodegenerative changes at several structural and functional levels in human brain tissue. The fractal dimension (FD) is a quantitative parameter that characterizes the morphometric variability of the human brain. In this study we investigate spherical harmonic-based FD (SHFD), thickness and local gyrification index (LGI) to assess whether they identify cortical surface abnormalities toward the conversion to AD. We study 33 AD patients, 122 mild cognitive impairment (MCI) patients (50 MCI-converters and 29 MCI-non converters) and 32 healthy controls (HC). SHFD, thickness and LGI methodology allowed us to perform not only global but also local level assessments in each cortical surface vertex. First, we found that global SHFD decreased in AD and future MCI-converters compared to HC, and in MCI-converters compared to MCI-non-converters. Second, we found that local white matter SHFD was reduced in AD compared to HC and MCI mainly in medial temporal lobe. Third, local white matter SHFD was significantly reduced in MCI-converters compared to MCI-non-converters in distributed areas, including the medial frontal lobe. Thickness and LGI metrics presented a reduction in AD compared to HC. Thickness was significantly reduced in MCI-converters compared to healthy controls in entorhinal cortex and lateral temporal. In summary, SHFD was the only surface measure showing differences between MCI individuals that will convert or remain stable in the next four years. We suggest that SHFD may be an optimal complement to thickness loss analysis in monitoring longitudinal changes in preclinical and clinical stages of AD.
There is no agreement on the pattern of recognition memory deficits characteristic of patients diagnosed with mild cognitive impairment (MCI). Whereas lower performance in recollection is the hallmark of MCI, there is a strong controversy about possible deficits in familiarity estimates when using recognition memory tasks. The aim of this research is to shed light on the pattern of responding in recollection and familiarity in MCI. Five groups of participants were tested. The main participant samples were those formed by two MCI groups differing in age and an Alzheimer's disease group (AD), which were compared with two control groups. Whereas one of the control groups served to assess the performance of the MCI and AD people, the other one, composed of young healthy participants, served the purpose of evaluating the adequacy of the experimental tasks used in the evaluation of the different components of recognition memory. We used an associative recognition task as a direct index of recollection and a choice task on a pair of stimuli, one of which was perceptually similar to those studied in the associative recognition phase, as an index of familiarity. Our results indicate that recollection decreases with age and neurological status, and familiarity remains stable in the elderly control sample but it is deficient in MCI. This research shows that a unique encoding situation generated deficits in recollective and familiarity mechanisms in mild cognitive impaired individuals, providing evidence for the existence of deficits in both retrieval processes in recognition memory in a MCI stage.
Objective:The retrieval deficit hypothesis states that the lack of deficit in recognition often observed in patients with Parkinson's disease is because of the low retrieval requirements of the task, given that these patients have retrieval and not encoding deficits. To test this hypothesis we investigated recognition memory by familiarity in Parkinson's patients and in patients with Lewy Bodies disease and Parkinson with dementia. Method: We analyzed to what extent the experimental groups were able to recognize by familiarity in a typical yes/no recognition memory task. The experimental groups were patients with early nondemented Parkinson's disease, advanced nondemented Parkinson's disease, demented Parkinson's patients, and patients with dementia with Lewy Bodies. We compared their performance with a group of young and another group of old healthy participants. The estimation of familiarity was made by analyzing recognition of word targets and distractors consisting of combinations of different letters in comparison with a condition in which targets and distractors were composed of similar letters, even though subjects were unaware of the independent variable. Results: The results indicate that familiarity was used at the same level by controls, patients with early Parkinson's disease and patients with dementia with Lewy Bodies. Although late Parkinson patients also used familiarity, its effect was only marginally significant. Patients with Parkinson's disease and dementia were not capable of using familiarity in recognition memory. Conclusions: Our results support the retrieval deficit hypothesis as Parkinson's patients without dementia show no deficit in a situation in which the retrieval requirements are minimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.