Seasonal fluctuations are often found in many time series. In addition, non-linearity and the relationship with other time series are prominent behaviors of several, of such series. In this paper, we consider the modeling of multiplicative seasonal threshold autoregressive processes with exogenous input (TSARX), which explicitly and simultaneously incorporate multiplicative seasonality and threshold nonlinearity. Seasonality is modeled to be stochastic and regime dependent. The proposed model is a special case of a threshold autoregressive process with exogenous input (TARX). We develop a procedure based on Bayesian methods to identify the model, estimate parameters, validate the model and calculate forecasts. In the identification stage of the model, we present a statistical test of regime dependent multiplicative seasonality. The proposed methodology is illustrated with a simulated example and applied to economic empirical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.