Ecologists and evolutionary biologists are increasingly using big-data approaches to tackle questions at large spatial, taxonomic, and temporal scales. However, despite recent efforts to gather two centuries of biodiversity inventories into comprehensive databases, many crucial research questions remain unanswered. Here, we update the concept of knowledge shortfalls and review the tradeoffs between generality and uncertainty. We present seven key shortfalls of current biodiversity data. Four previously proposed shortfalls pinpoint knowledge gaps for species taxonomy (Linnean), distribution (Wallacean), abundance (Prestonian), and evolutionary patterns (Darwinian). We also redefine the Hutchinsonian shortfall to apply to the abiotic tolerances of species and propose new shortfalls relating to limited knowledge of species traits (Raunkiaeran) and biotic interactions (Eltonian). We
Aim Nowadays, large amounts of species distribution data and software for implementing different species distribution modelling methods are freely available through the internet. As a result, methodological works that analyse the relative performance of modelling techniques, as well as those that study which species characteristics affect their performance, are necessary. We discuss three important topics that must be kept in mind when modelling species distributions, namely (i) the distinction between potential and realized distribution, (ii) the effect of the relative occurrence area of the species on the results of the evaluation of model performance, and (iii) the general inaccuracy of the predictions of the realized distribution provided by species distribution modelling methods. Location Unspecific.Methods Using some recent papers as a basis, we illustrate the three issues mentioned above and discuss the negative implications of neglecting them.Results Considering a potential-realized distribution gradient, different modelling methods may be arranged along this gradient according to their ability to model any concept. Complex techniques may be more suitable to model the realized distribution than simple ones, which may be more appropriate to estimate the potential distribution. Comparisons among techniques must consider this scenario. The relative occurrence area of the species conditions the results of the evaluation scores, implying that models of rare species will unavoidably yield higher discrimination values. Moreover, discrimination values that are usually reported in the literature may imply considerable over or underestimations of the distribution of the species.Main conclusions It is extremely important to establish a solid conceptual and methodological framework on which the emergent field of species distribution modelling can stand and develop.
Species distribution models (SDM) are commonly used to obtain hypotheses on either the realized or the potential distribution of species. The reliability and meaning of these hypotheses depends on the kind of absences included in the training data, the variables used as predictors and the methods employed to parameterize the models. Information about the absence of species from certain localities is usually lacking, so pseudo‐absences are often incorporated to the training data. We explore the effect of using different kinds of pseudo‐absences on SDM results. To do this, we use presence information on Aphodius bonvouloiri, a dung beetle species of well‐known distribution. We incorporate different types of pseudo‐absences to create different sets of training data that account for absences of methodological (i.e. false absences), contingent and environmental origin. We used these datasets to calibrate SDMs with GAMs as modelling technique and climatic variables as predictors, and compare these results with geographical representations of the potential and realized distribution of the species created independently. Our results confirm the importance of the kind of absences in determining the aspect of species distribution identified through SDM. Estimations of the potential distribution require absences located farther apart in the geographic and/or environmental space than estimations of the realized distribution. Methodological absences produce overall bad models, and absences that are too far from the presence points in either the environmental or the geographic space may not be informative, yielding important overestimations. GLMs and Artificial Neural Networks yielded similar results. Synthetic discrimination measures such as the Area Under the Receiver Characteristic Curve (AUC) must be interpreted with caution, as they can produce misleading comparative results. Instead, the joint examination of ommission and comission errors provides a better understanding of the reliability of SDM results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.