The periparturient period presents major physiological challenges for the dairy cow. It is a period that is affected by metabolic stressors, major changes in endocrine status, and altered immune function, which together result in an increased risk of disease. Immunological, hematological, and metabolic profiles from the periparturient period of heifers (primipara) were compared with those of cows (pluripara) to test the hypothesis that at the time of calving they have qualitatively different peripheral blood profiles. Blood samples were collected from 22 Holstein-Friesian animals on 3 occasions: approximately 2 wk before calving, within 24h after calving, and approximately 2 wk after calving. Quantitative PCR was used to measure the expression of a selected set of cytokines and receptors by peripheral blood leukocytes. Additional analyses included hemoglobin concentration, red cell, platelet and white cell counts (total and differentiated), and clinical diagnostic biochemical profiles. Total leukocyte counts, neutrophils, and lymphocytes were higher in heifers than cows before calving and within 24h after calving. Alkaline phosphatase was consistently higher in heifers than cows and several significant differences were observed between the 2 groups with regards to cytokine and cytokine-receptor mRNA expression. The results warrant further investigation from the perspective of identifying risk factors for metabolic and parturient disease in dairy cattle.
Immunoglobulin A (IgA) activity has been associated with reduced growth and fecundity of Teladorsagia circumcincta.IgA is active at the site of infection in the abomasal mucus. However, while IgA activity in abomasal mucus is not easily measured in live animals without invasive methods, IgA activity can be readily detected in the plasma, making it a potentially valuable tool in diagnosis and control. We used a Bayesian statistical analysis to quantify the relationship between mucosal and plasma IgA in sheep deliberately infected with T. circumcincta. The transfer of IgA depends on mucosal IgA activity as well as its interaction with worm number and size; together these account for over 80% of the variation in plasma IgA activity. By quantifying the impact of mucosal IgA and worm number and size on plasma IgA, we provide a tool that can allow more meaningful interpretation of plasma IgA measurements and aid the development of efficient control programmes.
Gastrointestinal nematodes are a global cause of disease and death in humans, wildlife and livestock. Livestock infection has historically been controlled with anthelmintic drugs, but the development of resistance means that alternative controls are needed. The most promising alternatives are vaccination, nutritional supplementation and selective breeding, all of which act by enhancing the immune response. Currently, control planning is hampered by reliance on the faecal egg count (FEC), which suffers from low accuracy and a nonlinear and indirect relationship with infection intensity and host immune responses. We address this gap by using extensive parasitological, immunological and genetic data on the sheep–Teladorsagia circumcincta interaction to create an immunologically explicit model of infection dynamics in a sheep flock that links host genetic variation with variation in the two key immune responses to predict the observed parasitological measures. Using our model, we show that the immune responses are highly heritable and by comparing selective breeding based on low FECs versus high plasma IgA responses, we show that the immune markers are a much improved measure of host resistance. In summary, we have created a model of host–parasite infections that explicitly captures the development of the adaptive immune response and show that by integrating genetic, immunological and parasitological understanding we can identify new immune-based markers for diagnosis and control.
BackgroundThe study of metabolism has attracted much attention during the last years due to its relevance in various diseases. The advance in metabolomics platforms allows us to detect an increasing number of metabolites in abnormal high/low concentration in a disease phenotype. Finding a mechanistic interpretation for these alterations is important to understand pathophysiological processes, however it is not an easy task. The availability of genome scale metabolic networks and Systems Biology techniques open new avenues to address this question.ResultsIn this article we present a novel mathematical framework to find enzymes whose malfunction explains the accumulation/depletion of a given metabolite in a disease phenotype. Our approach is based on a recently introduced pathway concept termed Carbon Flux Paths (CFPs), which extends classical topological definition by including network stoichiometry. Using CFPs, we determine the Connectivity Curve of an altered metabolite, which allows us to quantify changes in its pathway structure when a certain enzyme is removed. The influence of enzyme removal is then ranked and used to explain the accumulation/depletion of such metabolite. For illustration, we center our study in the accumulation of two metabolites (L-Cystine and Homocysteine) found in high concentration in the brain of patients with mental disorders. Our results were discussed based on literature and found a good agreement with previously reported mechanisms. In addition, we hypothesize a novel role of several enzymes for the accumulation of these metabolites, which opens new strategies to understand the metabolic processes underlying these diseases.ConclusionsWith personalized medicine on the horizon, metabolomic platforms are providing us with a vast amount of experimental data for a number of complex diseases. Our approach provides a novel apparatus to rationally investigate and understand metabolite alterations under disease phenotypes. This work contributes to the development of Systems Medicine, whose objective is to answer clinical questions based on theoretical methods and high-throughput “omics” data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.