In this paper, we study the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms defined on 3−torus with compact center leaves. Assuming the existence of a periodic leaf with Morse-Smale dynamics we prove a sharp upper bound for the number of maximal measures in terms of the number of sources and sinks of Morse-Smale dynamics. A well-known class of examples for which our results apply are the so-called Kan-type diffeomorphisms admitting physical measures with intermingled basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.