Despite a rich African Plio-Pleistocene hominin fossil record, the ancestry of Homo and its relation to earlier australopithecines remain unresolved. Here we report on two partial skeletons with an age of 1.95 to 1.78 million years. The fossils were encased in cave deposits at the Malapa site in South Africa. The skeletons were found close together and are directly associated with craniodental remains. Together they represent a new species of Australopithecus that is probably descended from Australopithecus africanus. Combined craniodental and postcranial evidence demonstrates that this new species shares more derived features with early Homo than any other australopith species and thus might help reveal the ancestor of that genus.
Hand bones from a single individual with a clear taxonomic affiliation are scarce in the hominin fossil record, which has hampered understanding the evolution of manipulative abilities in hominins. Here we describe and analyze a nearly complete wrist and hand of an adult female [Malapa Hominin 2 (MH2)] Australopithecus sediba from Malapa, South Africa (1.977 million years ago). The hand presents a suite of Australopithecus-like features, such as a strong flexor apparatus associated with arboreal locomotion, and Homo-like features, such as a long thumb and short fingers associated with precision gripping and possibly stone tool production. Comparisons to other fossil hominins suggest that there were at least two distinct hand morphotypes around the Plio-Pleistocene transition. The MH2 fossils suggest that Au. sediba may represent a basal condition associated with early stone tool use and production.
We describe the geological, geochronological, geomorphological, and faunal context of the Malapa site and the fossils of Australopithecus sediba. The hominins occur with a macrofauna assemblage that existed in Africa between 2.36 and 1.50 million years ago (Ma). The fossils are encased in water-laid, clastic sediments that were deposited along the lower parts of what is now a deeply eroded cave system, immediately above a flowstone layer with a U-Pb date of 2.026 T 0.021 Ma. The flowstone has a reversed paleomagnetic signature and the overlying hominin-bearing sediments are of normal polarity, indicating deposition during the 1.95-to 1.78-Ma Olduvai Subchron. The two hominin specimens were buried together in a single debris flow that lithified soon after deposition in a phreatic environment inaccessible to scavengers.
The fossil record of the hominin pelvis reflects important evolutionary changes in locomotion and parturition. The partial pelves of two individuals of Australopithecus sediba were reconstructed from previously reported finds and new material. These remains share some features with australopiths, such as large biacetabular diameter, small sacral and coxal joints, and long pubic rami. The specimens also share derived features with Homo, including more vertically oriented and sigmoid-shaped iliac blades, greater robusticity of the iliac body, sinusoidal anterior iliac borders, shortened ischia, and more superiorly oriented pubic rami. These derived features appear in a species with a small adult brain size, suggesting that the birthing of larger-brained babies was not driving the evolution of the pelvis at this time.
A new partial cranium (UW 88-886) of the Plio-Pleistocene baboon Papio angusticeps from Malapa is identified, described and discussed. UW 88-886 represents the only non-hominin primate yet recovered from Malapa and is important both in the context of baboon evolution as well as South African hominin site biochronology. The new specimen may represent the first appearance of modern baboon anatomy and coincides almost perfectly with molecular divergence date estimates for the origin of the modern P. hamadryas radiation. The fact that the Malapa specimen is dated between ~2.026–2.36 million years ago (Ma) also has implications for the biochronology of other South African Plio-Pleistocene sites where P. angusticeps is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.