There are large differences between paper mills in, e.g. feedstock use and grades produced, but typical processes are similar in all mills. The aim of this study is to benchmark the specific energy consumption (SEC) of similar processes within different paper mills in order to identify energy improvement potentials at process level. We have defined improvement potentials as measures that can be taken at mill/ process level under assumed fixed inputs and outputs. We were able to use industrial data on detailed process level, and we conducted energy benchmarking comparisons in 23 Dutch paper mills. We calculated average SECs per process step for different paper grades, and we were able to identify ranges in SECs between mills producing the same grade. We found significant opportunities for energy efficiency improvement in the wire and press section as well as in the drying section. The total energy improvement potential based on identified best practices in these sections was estimated at 5.4 PJ (or 15 % of the total primary energy use in the selected mills). Energy use in the other processes was found to be too dependent on quality and product specifications to be able to quantify improvement potentials. Our results emphasise that even a benchmark on detailed process level does not lead to clear estimations of energy improvement potentials without accounting for structural effects and without having a decent understanding of the process.
Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the country of biomass origin and buy the credits (Clean Development Mechanism (CDM) and Joint Implementation (JI)). This study analyzes which of those options is optimal for transportation fuels and looks for the key variables that influence the result. In two case studies (Mozambique and Brazil), the two trading systems are compared for the amount of credits generated, land-use and associated costs. We found costs of 17-30 euro per ton of carbon for the Brazilian case and economic benefits of 11 to 60 euros per ton of carbon avoided in the Mozambique case. The impact of carbon changes related to direct land-use changes was found to be very significant (both positive and negative) and can currently only be included in emission credit trading, which can largely influence the results. In order to avoid indirect land-use changes (leakage) and consequent GHG emissions, it is crucial that bioenergy crop production is done in balance with improvements of management of agriculture and livestock management. Whatever trading option is economically most attractive depends mainly on the emission baseline in the exporting (emission credit trading) or importing (physical trading) country since both bio-and fossil fuel prices are world market prices in large scale trading systems where transportation costs are low. Physical trading could be preferential since besides the GHG reduction one could also benefit from the energy. It could also generate considerable income sources for exporting countries. This study could contribute to the development of a methodology to deal with bio fuels for transport, in Emission Trading (ET), CDM and the certification of traded bio fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.