ObjectivesGuided implant surgery (GIS) is performed with drilling guides that are produced on the virtual tooth model using CAD/CAM technology. The prerequisite for this workflow is the alignment of patients cone beam computed tomography CBCT and surface scan (registration). Dental restorations may cause deteriorating imaging artifacts in CBCT data, which in turn can have an impact on the registration process. The influence of the user and the preprocessing of data and of image artifacts on the registration accuracy were examined.Material and Methods CBCT data and intraoral surface scans of 36 patients were used for virtual implant planning in coDiagnostiX (Dentalwings, Montreal, Canada). CBCT data were reconstructed to a three‐dimensional anatomical model with the default settings provided by the software and also manually by four different examiners. Subsequently, the CBCT and intraoral surface models were registered by each examiner with the help of anatomical landmarks. Patients' data were subdivided into four groups (A–D) according to the number of metallic restorations: A = 0–2 restorations, B = 3–5 restorations, C = 6–8 restorations and D > 8 restorations. After registration, the distances between CBCT and dental surface models were measured. Linear regression models were used to assess the influence of the segmentation, the examiner and to the number of restorations (P < 0.05).ResultsThe deviations between surface scan and CBCT models accounted to 0.54 mm (mean). The mean deviations were 0.69 mm (max. 24.8 mm) and 0.4 mm (max. 9.1 mm) for default and manual segmentation, respectively. Mean deviations of 0.36 mm (Group A), 0.43 mm (Group B), 0.67 mm (Group C) and 1.01 mm (Group D) were recorded.The segmentation (P = 0.000), the user (P = 0.0052) and the number of restorations (P = 0.0337) had a significant influence on the registration accuracy.ConclusionsThe deviation between CBCT and surface scan model resulting from inaccurate registration is transferred to the surgical field and results in a deviation between the planned and actual implant position. The registration accuracy in commercial virtual implant planning software is significantly influenced by the preprocessing of imported data, by the user and by the number of restorations resulting in clinically non‐acceptable deviations encoded in drilling guides.
The cover image, by Tabea Flügge et al., is based on the Original Article Registration of cone beam computed tomography data and intraoral surface scans – A prerequisite for guided implant surgery with CAD/CAM drilling guides, DOI: .
The analysis of microwear patterns, including scratch types and widths, has enabled reconstruction of the dietary habits and lifestyles of prehistoric and modern humans. The aim of this in vitro study was to determine whether an assessment of microwear features of experimental scratches placed on enamel, perpendicularly to the direction of grinding, could predict the grinding direction. Experimental scratches were placed using a scalpel blade on standardised wear facets that had been prepared by wearing opposing enamel surfaces in an electromechanical tooth wear machine. These control 'baseline' facets (with unworn experimental scratches) were subjected to 50 wear cycles, so that differential microwear could be observed on the leading and trailing edges of the 'final' facets. In Group 1 (n=28), the 'footprint' microwear patterns corresponding to the known grinding direction of specimens in the tooth wear machine were identified. Then, they were used to predict the direction of tooth grinding blindly in the same sample after a 2-week intermission period. To avoid overfitting the predictive model, its sensitivity was also cross-validated in a new sample (Group 2, n=14). A crescent-shaped characteristic observed in most experimental scratches matched the grinding direction on all occasions. The best predictor of the direction of grinding was a combined assessment of the leading edge microwear pattern and the crescent characteristic (82.1% in Group 1 and 92.9% in Group 2). In conclusion, a simple scratch test can determine the direction of tooth grinding with high reliability, although further improvement in sensitivity is desirable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.