Chronic diabetic foot is a global burden affecting millions of people, and the chronicity of an ulcer is directly linked to the diverse bacterial burden and its biofilm mode of infection. The bacterial diversity of 100 chronic diabetic ulcer samples was profiled via traditional culturing method as well as metagenomic approach by sequencing the 16S rRNA V3 hyper-variable region on Illumina Miseq Platform (Illumina, Inc., San Diego, CA). All the relevant clinical metadata, including duration of diabetes, grade of ulcer, presence of neuropathy, and glycaemic level, were noted and correlated with the microbiota. The occurrence and establishment of bacterial biofilm over chronic wound tissues was revealed by Fluorescent in situ Hybridization and Scanning Electron Microscopy. The biofilm-forming ability of predominant bacterial isolates was studied via crystal violet assay and Confocal Laser Scanning Microscopy. The dominant phyla obtained from bacterial diversity analysis were Firmicutes, Proteobacteria, and Actinobacteria. The dominant aerobic pathogens identified by culture method are Pseudomonas, Proteus, Enterococcus, and Staphylococcus, whereas high-throughput sequencing revealed heightened levels of Streptococcus and Corynebacterium along with 22 different obligate anaerobes. The biofilm occurrence in chronic diabetic ulcer infection is well analysed. Herein, we illustrate the comprehensive pattern of bacterial infection and identify the community composition of chronic wound pathogenic biofilm.
Multidrug-resistant Staphylococcus aureus is a leading concern worldwide. Coagulase-Negative Staphylococci are claimed to be the reservoir and source of important resistant elements in S. aureus. However, the origin and evolutionary route of resistant genes in S. aureus are still remaining unknown. Here, we performed a detailed phylogenomic analysis of 152 completely sequenced S. aureus strains in comparison with 7,529 non-Staphylococcus aureus reference bacterial genomes. Our results reveal that S. aureus has a large open pan-genome where 97 (55%) of its known resistant-related genes belonging to its accessory genome. Among these genes, 47 (27%) were located within the Staphylococcal Cassette Chromosome mec (SCCmec), a transposable element responsible for resistance against major classes of antibiotics including beta-lactams, macrolides, and aminoglycosides. However, the physically linked mec-box genes (MecA–MecR–MecI) that are responsible for the maintenance of SCCmec elements is not unique to S. aureus, instead it is widely distributed within Staphylococcaceae family. The phyletic patterns of SCCmec-encoded resistant genes in Staphylococcus species are significantly different from that of its core genes indicating frequent exchange of these genes between Staphylococcus species. Our in-depth analysis of SCCmec-resistant gene phylogenies reveals that genes such as blaZ, ble, kmA, and tetK that are responsible for beta-lactam, bleomycin, kanamycin, and tetracycline resistance in S. aureus were laterally transferred from non-Staphylococcus sources. In addition, at least 11 non-SCCmec-encoded resistant genes in S. aureus, were laterally acquired from distantly related species. Our study evidently shows that gene transfers played a crucial role in shaping the evolution of antibiotic resistance in S. aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.