The distribution of lamprey gonadotropin-releasing hormone (GnRH)-I and -III has been extensively characterized by immunocytochemistry in the forebrain of the sea lamprey, Petromyzon marinus. However, the cellular location of lamprey GnRH-III mRNA expression by in situ hybridization in the lamprey brain has not been determined. We show for the first time the location of expression of lamprey GnRH-III, as well as provide a more comprehensive in situ study of lamprey GnRH-I and glutamic acid decarboxylase (GAD; GABA-synthesizing enzyme) mRNA expression in the brain of the lamprey in different reproductive life stages. Colorimetric and dual-label fluorescent amplification methods of in situ hybridization were used on brain tissue sections of adult, juvenile, and larval sea lamprey. In each life stage of the lamprey, expression of lamprey GnRH-I was shown in the preoptic area (POA) and the hypothalamus forming the characteristic arc-like cell population extending from the preoptic nucleus (NPO) to the neurohypophysis. Lamprey GnRH-III expression was also seen in the POA of each life stage in close proximity to lamprey GnRH-I mRNA containing neurons. GAD expression was shown in distinct cell clusters in and around the POA, in the olfactory bulb, in the dorsal thalamus beneath the habenular region, and also in the ventral-medial hypothalamus stretching from the periventricular region to the anterior portion of the rhombencephalon. Using dual-label in situ hybridization, we have shown that lamprey GnRH-I and -III mRNA are colocalized in the same cells in the POA in adult lampreys. Dual-label in situ hybridization also showed close proximity of GAD mRNA containing neurons and GnRH containing neurons in the POA. These data suggest that γ-aminobutyric acid (GABA) may directly affect GnRH release in the brain of the sea lamprey.
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, genome instability, and sensitivity to ionizing radiation (IR). We have previously shown that a herpes simplex virus type 1 (HSV-1) amplicon vector carrying the human ataxia-telangiectasia mutated (ATM) complementary DNA (cDNA) is able to correct aspects of the cellular phenotype of human A-T cells in culture, and is also able to transfer the ATM cDNA to the Atm(-/-) mouse cerebellum. In order to achieve stable gene replacement, we have generated an HSV/adeno-associated virus (AAV) hybrid amplicon vector carrying the expression cassettes for the ATM cDNA [(9.2 kilobases (kb)] and enhanced green fluorescent protein (EGFP), flanked by AAV inverted terminal repeats (ITRs). This hybrid vector, in the presence of AAV Rep proteins, mediates site-specific integration into the AAVS1 site on chromosome 19 in human cells and in Atm(-/-) mice carrying that human locus. The functional activity of the vector-derived ATM was confirmed in vitro and in vivo by ATM autophosphorylation at Ser-1981 after IR. This proof-of-principle study establishes the ability of HSV/AAV hybrid amplicon vectors to mediate functional targeted integration of the ATM cDNA into A-T cells in culture and in Atm(-/-) mice in vivo, thus laying a foundation for possible gene therapy approaches in the treatment of A-T patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.