The root microbiome is composed of an incredibly diverse microbial community that provides services to the plant. A major question in rhizosphere research is how species in root microbiome communities interact with each other and their host. In the nutrient mutualism between host plants and arbuscular mycorrhizal fungi (AMF), competition often leads to certain species dominating host colonization, with the outcome being dependent on environmental conditions. In the past, it has been difficult to quantify the abundance of closely related species and track competitive interactions in different regions of the rhizosphere, specifically within and outside the host. Here, we used an artificial root system (in vitro root organ cultures) to investigate intraradical (within the root) and extraradical (outside the root) competitive interactions between two closely related AMF species, Rhizophagus irregularis and Glomus aggregatum, under different phosphorus availabilities. We found that competitive interactions between AMF species reduced overall fungal abundance. R. irregularis was consistently the most abundant symbiont for both intraradical and extraradical colonization. Competition was the most intense for resources within the host, where both species negatively affected each other's abundance. We found the investment ratio (i.e. extraradical abundance/intraradical abundance) shifted for both species depending on whether competitors were present or not. Phosphorus availability did not change the outcome of these interactions. Our results suggest that studies on competitive interactions should focus on intraradical colonization dynamics and consider how changes in investment ratio are mediated by fungal species interactions.
Species that evolved through ecological speciation and that lack intrinsic genetic incompatibilities may nonetheless be maintained by extrinsic postmating isolating barriers that impose selection against hybrids. These species, however, may be vulnerable to a breakdown in postmating isolation. Here, we investigate a model system for ecological speciation: sympatric limnetic-benthic pairs of threespine sticklebacks. Recently, stickleback hybrid abundance in Enos Lake has increased. Given that ecological selection against hybrids was historically an important component of total reproductive isolation, we tested whether ecologically dependent postmating isolation is still functioning. We compared body shape, diet, growth, and survival in present-day Enos fish with trait data in the undisturbed Paxton Lake species pair and with historical Enos Lake data. In both Paxton and historical Enos data, we found a strong correlation between body shape and diet; however, in present-day Enos fish, this correlation was absent. Using fitness estimates based on growth rates and survival, we found no evidence of selection against intermediate morphologies. It appears that postmating isolation has broken down, allowing hybrids to persist and contributing to the collapse of the species pair.
There are now a number of well-studied cases in which hybridization between closely related sympatric species has increased, sometimes resulting in the replacement of species pairs by hybrid swarms. Many of these cases have been linked to anthropogenic environmental change, but the mechanisms leading from environmental change to species collapse, and the long-term effects of hybridization on species pairs, remain poorly understood. We used an individual-based stochastic simulation model to explore the conditions under which disturbances that weaken premating barriers to reproduction patterns between sympatric species might lead to increased hybridization and to species collapse. Disturbances often resulted in bouts of hybridization, but in many cases strong reproductive isolation spontaneously reemerged. This was sometimes true even after hybrid swarms had replaced parental species. The reemergence of species pairs was most likely when disturbances were of short duration. Counterintuitively, incipient species pairs were more likely to reemerge after strong but temporary disturbances than after weaker disturbances of the same duration. Even temporary bouts of hybridization often led to substantial homogenization of species pairs. This suggests that ecosystem managers may be able to refill ecological niches, but in general will not be able to resurrect lost species after species collapse.K E Y W O R D S : Hybridization, models/simulations, reproductive isolation, speciation.
Global variation in species richness is widely recognized, but the explanation for what drives it continues to be debated. Previous efforts have focused on a subset of potential drivers, including evolutionary rate, evolutionary time (maximum clade age of species restricted to a region), dispersal (migration from one region to another), ecological factors and climatic stability. However, no study has evaluated these competing hypotheses simultaneously at a broad spatial scale. Here, we examine their relative contribution in determining the richness of the most comprehensive dataset of tetrapods to our knowledge (84% of the described species), distinguishing between the direct influences of evolutionary rate, evolutionary time and dispersal, and the indirect influences of ecological factors and climatic stability through their effect on direct factors. We found that evolutionary time exerted a primary influence on species richness, with evolutionary rate being of secondary importance. By contrast, dispersal did not significantly affect richness patterns. Ecological and climatic stability factors influenced species richness indirectly by modifying evolutionary time (i.e. persistence time) and rate. Overall, our findings suggest that global heterogeneity in tetrapod richness is explained primarily by the length of time species have had to diversify.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.