Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and omega-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (sigma(EL)) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film's internal structure is shown to account for changes in sigma(EL). The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The sigma(EL) results concur with the behavior of UV-vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both.
We describe unprecedented resolution of electrochemically observed quantized double layer (QDL) charging, attained with use of reduced solution temperatures and with an annealing procedure that produces hexanethiolate monolayer protected gold clusters (C6 MPCs) with a high level of monodispersity in charging capacitance, C(CLU). The spacing DeltaV = e/C(CLU) on the electrochemical potential axis between one electron changes in the electronic charge of nanoscopic metal particles is determined by their effective capacitance C(CLU). The high monodispersity of the C6 MPCs with Au(140) cores facilitates (a) detailed rotated disk and cyclic voltammetric measurements, (b) simulation of QDL waveshapes based on assumed reversible, multivalent redox-like behavior, (c) determination of nanoparticle diffusion rates, and (d) observation of as many as 13 changes in the MPC charge state, from MPC(6-) to MPC(7+). The single electron QDL charging peaks are quite evenly spaced (DeltaV constant) at potentials near the MPC potential of zero charge, but are irregularly spaced at more positive and negative potentials. The irregular spacing is difficult to rationalize with classical double layer capacitance ideas and is proposed to arise from a correspondingly structured (e.g., not smooth) density of electronic states of the nanoparticle core, resulting from its small HOMO/LUMO gap and incipiently molecule-like behavior.
This report describes how the electrochemical double-layer capacitances of nanometer-sized alkanethiolate monolayer-protected Au clusters (MPCs) dissolved in electrolyte solution depend on the alkanethiolate chain length (C4 to C16). The double-layer capacitances of individual MPCs (C(CLU)) are sufficiently small (sub-attoFarad, aF) that their metal core potentials change by >0.1 V increments for single electron transfers at the electrode/solution interface. Thus, the current peaks observed are termed "quantized double layer charging peaks", and their spacing on the potential axis varies with C(CLU). Differential pulse voltammetric measurements of C(CLU) in solutions of core-size-fractionated (i.e., monodisperse) MPCs are compared to a simple theoretical model, which considers the capacitance as governed by the thickness of a dielectric material (the monolayer, whose chain length is varied) between concentric spheres of conductors (the Au core and the electrolyte solution). The experimental results fit the simple model remarkably well. The prominent differential pulse voltammetric charging peaks additionally establish this method, along with high-resolution transmission electron microscopy and laser ionization-desorption mass spectrometry, as a tool for evaluating the degree of monodispersity of MPC preparations. We additionally report on a new tactic for the preparation of monodisperse MPCs with hexanethiolate monolayers.
The rate of electron self-exchange reactions between discretely charged metal-like cores of nanoparticles has been measured in multilayer films of nanoparticles by an electrochemical method. The nanoparticles are Au monolayer-protected clusters with mixed monolayers of hexanethiolate and mercaptoundecanoic acid ligands, linked to each other and to the Au electrode surface with carboxylate-metal ion-carboxylate bridges. Cyclic voltammetry of the nanoparticle films exhibits a series of well-defined peaks for the sequential, single-electron, double-layer charging of the 1.6-nm-diameter Au cores. The electron self-exchange is measured as a diffusion-like electron-hopping process, much as in previous studies of redox polymer films on electrodes. The average electron diffusion coefficient is DE = 10(+/-5) x 10(-8) cm2/s, with no discernible dependence on the state of charge of the nanoparticles or on whether the reaction increases or decreases the core charge. This diffusion constant corresponds to an average first-order rate constant kHOP of 2(+/-1) x 10(6) s(-1) and an average self-exchange rate constant, kEX, of 2(+/-1) x 10(8) M(-1) x s(-1), using a cubic lattice hopping model. This is a very large rate constant, considering the nominally lengthy linking bridge between the Au cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.