BackgroundThe airway epithelium participates in asthmatic inflammation in many ways. Target cells of the epithelium can respond to a variety of inflammatory mediators and cytokines. Damage to the surface epithelium occurs following the secretion of eosinophil-derived, highly toxic cationic proteins. Moreover, the surface epithelium itself is responsible for the synthesis and release of cytokines that cause the selective recruitment, retention, and accumulation of various inflammatory cells. To mimic the damage seen during asthmatic inflammation, the bronchial epithelium can be challenged with highly charged cationic polypeptides such as poly-l-arginine.Methodology/Principal FindingsIn this study, human bronchial epithelial cells, 16HBE14o- cells, were “chemically injured” by exposing them to poly-l-arginine as a surrogate of the eosinophil cationic protein. Cytokine antibody array data showed that seven inflammatory mediators were elevated out of the 40 tested, including marked elevation in interleukin (IL)-6 and IL-8 secretion. IL-6 and IL-8 mRNA expression levels were elevated as measured with real-time PCR. Cell culture supernatants from apical and basolateral compartments were collected, and the IL-6 and IL-8 production was quantified with ELISA. IL-6 and IL-8 secretion by 16HBE14o- epithelia into the apical compartment was significantly higher than that from the basolateral compartment. Using specific inhibitors, the production of IL-6 and IL-8 was found to be dependent on p38 MAPK, ERK1/2 MAPK, and NF-κB pathways.Conclusions/SignificanceThe results clearly demonstrate that damage to the bronchial epithelia by poly-l-arginine stimulates polarized IL-6 and IL-8 secretion. This apically directed secretion of cytokines may play an important role in orchestrating epithelial cell responses to inflammation.
P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl− secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such “cytokine networks” play an important role in sustaining the airway inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.