The i-motif DNA tetrameric structure is formed of two parallel duplexes intercalated in a head-to-tail orientation, and held together by hemiprotonated cytosine pairs. The four phosphodiester backbones forming the structure define two narrow and wide grooves. The short interphosphate distances across the narrow groove induce a strong repulsion which should destabilize the tetramer. To investigate this point, molecular dynamics simulations were run on the [d(C2)]4 and [d(C4)]4 tetramers in 3'E and 5'E topologies, for which the interaction of the phosphodiester backbones through the narrow groove is different. The analysis of the simulations, using the Molecular Mechanics Generalized Born Solvation Area and Molecular Mechanics Poisson-Boltzmann Solvation Area approaches, shows that it is the van der Waals energy contribution which displays the largest relative difference between the two topologies. The comparison of the solvent-accessible area of each topology reveals that the sugar-sugar interactions account for the greater stability of the 3'E topology. This stresses the importance of the sugar-sugar contacts across the narrow groove which, enforcing the optimal backbone twisting, are essential to the base stacking and the i-motif stability. Tighter interactions between the sugars are observed in the case of N-type sugar puckers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.