The data from this relatively small trial suggest that, although the effects of LCPUFAs may not always be evident on standardized developmental tasks at 18 mo, significant effects may emerge later on more specific or fine-grained tasks. The results imply that studies of nutrition and cognitive development should be powered to continue through early childhood. This parent trial was registered at clinicaltrials.gov as NCT00266825.
Background
Docosahexaenoic acid (DHA) is a long-chain polyunsaturated fatty acid that has been linked to improved vision and cognition in postnatal feeding studies and has been consistently associated with reduction of early preterm birth in prenatal supplementation trials. This is a report of the first long-term follow-up of infants from mothers receiving prenatal DHA supplementation in a US cohort.
Objective
Our objective was to evaluate the efficacy of the prenatal supplementation on both global and granular longitudinal assessments of cognitive and behavioral development.
Methods
In a randomized double-blind clinical trial, mothers received either 600 mg/d of DHA or a placebo beginning at 14.5 weeks of gestation and capsules were provided until delivery. Children from those pregnancies were followed by cognitive and behavioral assessments administered from 10 mo through 6 y of age. From 301 mothers in the initial study, ∼200 infants completed the longitudinal schedule.
Results
Although this intervention had been shown to reduce high-risk pregnancies and improve visual attention in infants during the first year, only a few positive long-term effects of prenatal DHA supplementation emerged from analyses of this follow-up. Increases in maternal blood DHA during pregnancy were related to verbal and full scale intelligence quotient (IQ) scores at 5 and 6 y, but these effects disappeared after controlling for SES. Maternal blood DHA concentrations at delivery were unrelated to outcomes, although maternal DHA at enrollment was related to productive vocabulary at 18 mo.
Conclusions
Although prenatal DHA supplementation substantially reduced early preterm birth and improved visual attention in infancy in this sample, no consistent long-term benefits were observed into childhood. Increases in maternal blood DHA concentration in pregnancy were related to higher IQs but this effect was confounded with SES and disappeared when SES was statistically controlled. This trial was registered at http://www.clinicaltrials.gov as NCT00266825 and NCT02487771.
Background
Results of randomized trials on the effects of prenatal docosahexaenoic acid (DHA) on infant cognition are mixed, but most trials have used global standardized outcomes, which may not be sensitive to effects of DHA on specific cognitive domains.
Methods
Women were randomized to 600 mg/d DHA or a placebo for the last two trimesters of pregnancy. Infants of these mothers were then followed on tests of visual habituation at 4, 6, and 9 months of age.
Results
DHA supplementation did not affect look duration or habituation parameters but infants of supplemented mothers maintained high levels of sustained attention (SA) across the first year; SA declined for the placebo group. The supplemented group also showed significantly reduced attrition on habituation tasks, especially at 6 and 9 months.
Conclusion
The findings support with the suggestion that prenatal DHA may positively affect infants’ attention and regulation of state.
Change in maternal DHA status during pregnancy was related to higher offspring 5-y fat-free mass. The other 2 indicators of intrauterine exposure to DHA suggested a trend for higher offspring 5-y fat-free mass. Our findings agree with an earlier observational study from the United Kingdom. This trial was registered at clinicaltrials.gov as NCT00266825.
Some FADS alleles are associated with lower DHA and ARA status assessed by the relative amount of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in plasma and red blood cell (RBC) phospholipids (PL). We determined two FADS single nucleotide polymorphisms (SNPs) in a cohort of pregnant women and examined the relationship of FADS1rs174533 and FADS2rs174575 to DHA and ARA status before and after supplementation with 600 mg per day of DHA. The 205 pregnant women studied were randomly assigned to placebo (mixed soy and corn oil) (n= 96) or 600 mg algal DHA (n=109) in 3 capsules per day for the last two trimesters of pregnancy. Women homozygous for the minor allele of FADS1rs174533 (but not FADS2rs174575) had lower DHA and ARA status at baseline. At delivery, minor allele homozygotes of FADS1rs174533 in the placebo group had lower RBC-DHA compared to major-allele carriers (P = 0.031), while in the DHA-supplemented group, all genotypes had higher DHA status compared to baseline (P = 0.001) and status did not differ by genotype (P = 0.941). Surprisingly, DHA but not the placebo decreased ARA status of minor allele homozygotes of both FADS SNPs but not major allele homozygotes at delivery. Any physiological effects of changing the DHA to ARA ratio by increasing DHA intake appears to be greater in minor allele homozygotes of some FADS SNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.