Oleosins are clinically relevant peanut allergens and most likely associated with severe allergic symptoms. In-shell roasting increases their allergenicity, which is consistent with the observation that most allergic reactions are in connection with roasted peanuts.
Background miRNAs are master regulators of signaling pathways critically involved in asthma and are transferred between cells in extracellular vesicles (EV). We aimed to investigate whether the miRNA content of EV secreted by primary normal human bronchial epithelial cells (NHBE) is altered upon asthma development. Methods NHBE cells were cultured at air‐liquid interface and treated with interleukin (IL)‐13 to induce an asthma‐like phenotype. EV isolations by precipitation from basal culture medium or apical surface wash were characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blot, and EV‐associated miRNAs were identified by a RT‐qPCR‐based profiling. Significant candidates were confirmed in EVs isolated by size‐exclusion chromatography from nasal lavages of children with mild‐to‐moderate (n = 8) or severe asthma (n = 9), and healthy controls (n = 9). Results NHBE cells secrete EVs to the apical and basal side. 47 miRNAs were expressed in EVs and 16 thereof were significantly altered in basal EV upon IL‐13 treatment. Expression of miRNAs could be confirmed in EVs from human nasal lavages. Of note, levels of miR‐92b, miR‐210, and miR‐34a significantly correlated with lung function parameters in children (FEV1FVC%pred and FEF25‐75%pred), thus lower sEV‐miRNA levels in nasal lavages associated with airway obstruction. Subsequent ingenuity pathway analysis predicted the miRNAs to regulate Th2 polarization and dendritic cell maturation. Conclusion Our data indicate that secretion of miRNAs in EVs from the airway epithelium, in particular miR‐34a, miR‐92b, and miR‐210, might be involved in the early development of a Th2 response in the airways and asthma.
Human tuberculosis (TB) is a leading global health threat and still constitutes a major medical challenge. However, mechanisms governing tissue pathology during post-primary TB remain elusive, partly because genetically or immunologically tractable animal models are lacking. In human TB, the demonstration of a large relative increase in interleukin (IL)-4 and IL-13 expression, which correlates with lung damage, indicates that a subversive T helper (TH)2 component in the response to Mycobacterium tuberculosis (Mtb) may undermine protective immunity and contribute to reactivation and tissue pathology. Up to now, there has been no clear evidence regarding whether IL-4/IL-13-IL-4 receptor-α (Rα)-mediated mechanisms may in fact cause reactivation and pathology. Unfortunately, the virtual absence of centrally necrotizing granulomas in experimental murine TB is associated with a poor induction of a TH2 immune response. We therefore hypothesize that, in mice, an increased production of IL-13 may lead to a pathology similar to human post-primary TB. In our study, aerosol Mtb infection of IL-13-over-expressing mice in fact resulted in pulmonary centrally necrotizing granulomas with multinucleated giant cells, a hypoxic rim and a perinecrotic collagen capsule, with an adjacent zone of lipid-rich, acid-fast bacilli-containing foamy macrophages, thus strongly resembling the pathology in human post-primary TB. Granuloma necrosis (GN) in Mtb-infected IL-13-over-expressing mice was associated with the induction of arginase-1-expressing macrophages. Indirect blockade of the endogenous arginase inhibitor l-hydroxyarginine in Mtb-infected wild-type mice resulted in a strong arginase expression and precipitated a similar pathology of GN. Together, we here introduce an experimental TB model that displays many features of centrally necrotizing granulomas in human post-primary TB and demonstrate that IL-13/IL-4Rα-dependent mechanisms leading to arginase-1 expression are involved in TB-associated tissue pathology. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Viral infection of the respiratory tract represents the major cause of acute asthma exacerbations. dsRNA is produced as an intermediate during replication of respiratory viruses and triggers immune responses via TLR3. This study aimed at clarifying the mechanisms underlying TLR3 triggered exacerbation of experimental allergic asthma. The TLR3 ligand poly(inosinic-cytidylic) acid was applied intranasally to mice with already established experimental allergic asthma. Airway inflammation, cytokine expression, mucus production, and airway reactivity was assessed in wild-type, IL-17A, or IL-23p19–deficient, and in NK cell–depleted mice. Local application of poly(inosinic-cytidylic) acid exacerbated experimental allergic asthma in mice as characterized by enhanced release of proinflammatory cytokines, aggravated airway inflammation, and increased mucus production together with pronounced airway hyperresponsiveness. This was further associated with augmented production of IL-17 by Th17 cells and NK cells. Whereas experimental exacerbation could be induced in IL-23p19–deficient mice lacking mature, proinflammatory Th17 cells, this was not possible in mice lacking IL-17A or in NK cell–depleted animals. These experiments indicate a central role for IL-17 derived from NK cells but not from Th17 cells in the pathogenesis of virus-triggered exacerbation of experimental asthma.
Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.