As moisture presents a critical contamination in lithium-ion batteries (LIBs), electrodes and separators need to be post-dried before cell assembly. The moisture adsorption, desorption and re-adsorption of electrodes during processing is strongly dependent on their material system, manufacturing route and microstructure. The microstructure, in turn, is significantly defined by the coating density, which is adjusted by calendering. As a consequence, the calendering step is expected to directly influence the moisture sorption behavior of electrodes. This is why the influence of different coating densities and structural properties on the moisture content of NCM622 cathodes was investigated in this study. For increasing density, an increasing moisture content was detected by Karl Fischer Titration and sorption measurements. SEM and BET analyses showed an increasing amount of NCM622 particle breakage, accompanied by a rising surface area. Hence, the increased moisture uptake of cathodes with higher density is mainly caused by a higher surface area, which results from particle cracking and breakage during calendering. Electrochemical analysis showed that the increased active surface area of cathodes with higher densities leads to a good performance during formation and at low C-rates. However, the reduced porosity impairs the ionic conductivity and causes capacity loss at higher C-rates.
Excessive moisture adsorbed in electrodes and separators of a Li‐ion battery hampers its performance and is, therefore, removed to a certain amount in a post‐drying process. An insufficient understanding of the process results thereby in high process costs. Cost reductions can only be achieved efficiently with an improved process understanding by modeling this post‐drying process. As process modeling requires knowledge of sorption equilibria of water in the components of the battery, the sorption equilibria of water in different anodes are determined by means of a magnetic suspension balance and compared with different experimental setups. The measured data of the adsorption isotherms are described mathematically and give an impression of the amount of moisture, which is going to adjust at an equilibrium starting from a dry anode. Moreover, the materials of the anode are evaluated for their moisture sorption behavior. It is shown that mass‐weighted sorption equilibria of water in the materials yield a good approximation of equivalent equilibria in the anode. In the investigated anodes, the binder and rheology additive carboxymethyl cellulose (CMC) accounts for the most water uptake.
In order to reduce the residual moisture in lithium‐ion batteries, electrodes and separators need to be post‐dried prior to cell assembly. On an industrial scale, this is often conducted batch‐wise in vacuum ovens for larger electrode and separator coils. Especially for electrodes, the corresponding post‐drying parameters have to be carefully chosen to sufficiently reduce the moisture without damaging the sensitive microstructure. This requires a fundamental understanding of structural limitations as well as heat transfer and water mass transport in coils. The aim of this study is to establish a general understanding of the vacuum post‐drying process of coils. Moreover, the targeted design of efficient, well‐adjusted and application‐oriented vacuum post‐drying procedures for electrode coils on the basis of modelling is employed, while keeping the post‐drying intensity as low as possible, in order to maintain the sensitive microstructure and to save time and costs. In this way, a comparatively short and moderate 2‐phase vacuum post‐drying procedure is successfully designed and practically applied. The results show that the designed procedure is able to significantly reduce the residual moisture of anode and cathode coils, even with greater electrode lengths and coating widths, without deteriorating the sensitive microstructure of the electrodes.
Hysteresis in the sorption equilibrium influences the production process of many multicomponent material systems. Electrodes for Li-ion batteries consist of several materials, some of which exhibit hysteresis in their sorption equilibrium with water. The moisture content adsorbed and absorbed in the electrodes of the Li-ion battery turned out to be an issue for its electrochemical performance and is reduced in the post-drying process. During this process, hysteresis in the sorption equilibrium needs to be overcome in order to achieve a low residual moisture content of the electrode. Modeling the post-drying process requires a description of the sorption equilibria of water in the components of the battery. This paper builds on previous research about the sorption equilibria and examines the hysteresis behavior of typical graphite anodes, with the active material graphite, carbon black as the conductive additive, and sodium carboxymethyl cellulose as well as styrene butadiene rubber as polymeric binders. Moreover, the mechanisms for the occurrence of hysteresis are presented, and how sorption equilibria during drying can be described is shown by applying models from the literature on the materials of battery electrodes. Theoretical deliberations on hysteresis mechanisms are validated, investigating graphite anodes of different material compositions and their materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.