The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including ϳ50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 Å and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis.Pre-mRNA splicing is catalyzed by a large RNP molecular machine, termed the spliceosome, which consists of the U1, U2, U4/U6, and U5 snRNPs and a multitude of non-snRNP proteins (reviewed in reference 48). The active site(s) responsible for the catalysis of pre-mRNA splicing is not preformed but, rather, is created anew during the highly dynamic process of spliceosome assembly. The latter is an ordered process during which several intermediates, termed E, A, B, and B*, can be detected in vitro (reviewed in reference 48). Assembly is initiated by the ATP-independent interaction of the U1 snRNP with the conserved 5Ј splice site of the pre-mRNA, forming the E complex. At this stage, the U2 snRNP is loosely associated with the pre-mRNA (11). In a subsequent step requiring ATP, the U2 snRNP stably interacts with the pre-mRNA's branch site, leading to formation of the A complex (also called the prespliceosome). Spliceosome assembly culminates with the formation of the spliceosomal B complex, during which the preformed U4/U6.U5 tri-snRNP particle interacts with the A complex. The B complex thus contains a full set of U snRNAs in a precatalytic state. It subsequently undergoes major rearrangements, including destabilization or loss of the U1 and U4 snRNPs, leading to catalytic activation and the formation of the so-called activated spliceosome (B* complex).Splicing catalysis subsequently proceeds by a two-step mechanism (reviewed in reference 29). During the first step the 5Ј splice site is cleaved, and the 5Ј end of the intron is covalen...
More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinitypurified human B, B act , and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, B act , and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing.The spliceosome is a highly complex and dynamic megadalton RNP machine. It is comprised of the five snRNPs U1, U2, U4, U5, and U6 and a large number of non-snRNP protein factors (reviewed in reference 42). Spliceosomes assemble de novo in a stepwise manner on each new intron to be spliced and thus pass through a series of distinct complexes (42). Initially, the U1 snRNP binds the pre-mRNA, forming the E complex, and after stable U2 snRNP interaction, the A complex is generated. Subsequently, the U4/U6 and U5 snRNPs associate, as part of the U4/U6.U5 tri-snRNP, and the precatalytic B complex is formed. Through a series of compositional and structural rearrangements, the B complex is activated, first yielding the B act complex. After the action of the DEXH box protein Prp2, the B* complex is formed, which catalyzes step 1 of splicing. This involves cleavage at the 5Ј splice site (ss) of the pre-mRNA and the ligation of the 5Ј end of the intron to the so-called branch site to form a lariat-like structure. After the first step, the spliceosomal C complex is formed, and it catalyzes the step 2 of splicing, during which the intron is excised and the exons are ligated together to form mRNA.Mass spectrometry (MS) analyses have shown that more than 200 proteins copurify with mixtures of human spliceosomal complexes (31, 47). Individual spliceosomal complexes contain many fewer proteins (e.g., ϳ125 for B, B act , and C complexes) and differ from each other considerably in composition (3,6,7,10). However, the relative abundances of all of the proteins present within a given spliceosomal complex are presently not clear. Spliceosomes contain...
RNA interference (RNAi)-based therapeutics have the potential to treat chronic hepatitis B virus (HBV) infection in a fundamentally different manner than current therapies. Using RNAi, it is possible to knock down expression of viral RNAs including the pregenomic RNA from which the replicative intermediates are derived, thus reducing viral load, and the viral proteins that result in disease and impact the immune system's ability to eliminate the virus. We previously described the use of polymer-based Dynamic PolyConjugate (DPC) for the targeted delivery of siRNAs to hepatocytes. Here, we first show in proof-of-concept studies that simple coinjection of a hepatocyte-targeted, N-acetylgalactosamine-conjugated melittin-like peptide (NAG-MLP) with a liver-tropic cholesterol-conjugated siRNA (chol-siRNA) targeting coagulation factor VII (F7) results in efficient F7 knockdown in mice and nonhuman primates without changes in clinical chemistry or induction of cytokines. Using transient and transgenic mouse models of HBV infection, we show that a single coinjection of NAG-MLP with potent chol-siRNAs targeting conserved HBV sequences resulted in multilog repression of viral RNA, proteins, and viral DNA with long duration of effect. These results suggest that coinjection of NAG-MLP and chol-siHBVs holds great promise as a new therapeutic for patients chronically infected with HBV.
Little is known about the higher-order structure of prespliceosomal A complexes, in which pairing of the pre-mRNA's splice sites occurs. Here, human A complexes were isolated under physiological conditions by doubleaffinity selection. Purified complexes contained stoichiometric amounts of U1, U2 and pre-mRNA, and crosslinking studies indicated that these form concomitant base pairing interactions with one another. A complexes contained nearly all U1 and U2 proteins plus B50 non-snRNP proteins. Unexpectedly, proteins of the hPrp19/CDC5 complex were also detected, even when A complexes were formed in the absence of U4/U6 snRNPs, demonstrating that they associate independent of the tri-snRNP. Double-affinity purification yielded structurally homogeneous A complexes as evidenced by electron microscopy, and allowed for the first time the generation of a three-dimensional structure. A complexes possess an asymmetric shape (B260 Â 200 Â195 Å ) and contain a main body with various protruding elements, including a head-like domain and foot-like protrusions. Complexes isolated here are well suited for in vitro assembly studies to determine factor requirements for the A to B complex transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.