Taking advantage of idleness to reduce dropped frames and memory consumption.
Embedding a modern language runtime as a component in a larger software system is popular these days. Communication between these systems often requires keeping references to each others' objects. In this paper we present and discuss the problem of cross-component memory management where reference cycles across component boundaries may lead to memory leaks and premature reclamation of objects may lead to dangling cross-component references. We provide a generic algorithm for effective, efficient, and safe garbage collection over component boundaries, which we call cross-component tracing. We designed and implemented cross-component tracing in the Chrome web browser where the JavaScript virtual machine V8 is embedded into the rendering engine Blink. Cross-component tracing from V8's JavaScript heap to Blink's C ++ heap improves garbage collection latency and eliminates long-standing memory leaks for real websites in Chrome. We show how cross-component tracing can help web developers to reason about reachability and retainment of objects spanning both V8 and Blink components based on Chrome's heap snapshot memory tool. Cross-component tracing was enabled by default for all websites in Chrome version 57 and is also deployed in other widely used software systems such as Opera, Cobalt, and Electron.
Efficient garbage collection is increasingly important in today's managed language runtime systems that demand low latency, low memory consumption, and high throughput. Garbage collection may pause the application for many milliseconds to identify live memory, free unused memory, and compact fragmented regions of memory, even when employing concurrent garbage collection. In animation-based applications that require 60 frames per second, these pause times may be observable, degrading user experience. This paper introduces idle time garbage collection scheduling to increase the responsiveness of applications by hiding expensive garbage collection operations inside of small, otherwise unused idle portions of the application's execution, resulting in smoother animations. Additionally we take advantage of idleness to reduce memory consumption while allowing higher memory use when high throughput is required. We implemented idle time garbage collection scheduling in V8, an open-source, production JavaScript virtual machine running within Chrome. We present performance results on various benchmarks running popular webpages and show that idle time garbage collection scheduling can significantly improve latency and memory consumption. Furthermore, we introduce a new metric called frame time discrepancy to quantify the quality of the user experience and precisely measure the improvements that idle time garbage collection scheduling provides for a WebGL-based game benchmark. Idle time garbage collection scheduling is shipped and enabled by default in Chrome.
G oogle's Chrome web browser strives to deliver a smooth user experience. An animation will update the screen at 60 FPS (frames per second), giving Chrome around 16.6 milliseconds to perform the update. Within these 16.6 ms, all input events have to be processed, all animations have to be performed, and finally the frame has to be rendered. A missed deadline will result in dropped frames. Such are visible to the user and degrade the user experience. These sporadic animation artifacts are referred to here as jank. 3 JavaScript, the lingua franca of the web, is typically used to animate web pages. It is a garbage-collected programming language where the application developer does not have to worry about memory management. The garbage collector interrupts the application to pass over the memory allocated by the application, determine live memory, free dead memory, and compact memory by moving objects closer together. While some of these garbage-collection phases can be performed in parallel Taking advantage of idleness to reduce dropped frames and memory consumption ULAN DEGENBAEV,
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.