Three motion-sensitive key elements of a neural circuit, presumably involved in processing object and distance information, were analyzed with optic flow sequences as experienced by blowflies in a three-dimensional environment. This optic flow is largely shaped by the blowfly's saccadic flight and gaze strategy, which separates translational flight segments from fast saccadic rotations. By modifying this naturalistic optic flow, all three analyzed neurons could be shown to respond during the intersaccadic intervals not only to nearby objects but also to changes in the distance to background structures. In the presence of strong background motion, the three types of neuron differ in their sensitivity for object motion. Object-induced response increments are largest in FD1, a neuron long known to respond better to moving objects than to spatially extended motion patterns, but weakest in VCH, a neuron that integrates wide-field motion from both eyes and, by inhibiting the FD1 cell, is responsible for its object preference. Small but significant object-induced response increments are present in HS cells, which serve both as a major input neuron of VCH and as output neurons of the visual system. In both HS and FD1, intersaccadic background responses decrease with increasing distance to the animal, although much more prominently in FD1. This strong dependence of FD1 on background distance is concluded to be the consequence of the activity of VCH that dramatically increases its activity and, thus, its inhibitory strength with increasing distance.
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol 94: [1761][1762][1763][1764][1765][1766][1767][1768][1769] 2005. First published May 25, 2005; doi:10.1152/jn.00308.2005. Neurons sensitive to visual motion change their response properties during prolonged motion stimulation. These changes have been interpreted as adaptive and were concluded, for instance, to adjust the sensitivity of the visual motion pathway to velocity changes or to increase the reliability of encoding of motion information. These conclusions are based on experiments with experimenter-designed motion stimuli that differ substantially with respect to their dynamical properties from the optic flow an animal experiences during normal behavior. We analyze for the first time motion adaptation under natural stimulus conditions. The experiments are done on the H1-cell, an identified neuron in the blowfly visual motion pathway that has served in many previous studies as a model system for visual motion computation. We reconstructed optic flow perceived by a blowfly in free flight and used this behaviorally generated optic flow to study motion adaptation. A variety of measures (variability in spike count, response latency, jitter of spike timing) suggests that the coding quality does not improve with prolonged stimulation. However, although the number of spikes decreases considerably during stimulation with natural optic flow, the amount of information that is conveyed stays nearly constant. Thus the information per spike increases, and motion adaptation leads to parsimonious coding without sacrificing the reliability with which behaviorally relevant information is encoded. I N T R O D U C T I O NThe activity of motion-sensitive neurons in a wide variety of species is known to depend on stimulus history, and the underlying motion-detection mechanisms are often regarded to adapt to prolonged motion stimulation. Motion adaptation has been investigated in motion-sensitive neurons of rabbits (e.g.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.