Molecular ultrasound is capable of elucidating the expression of angiogenic markers in vivo. However, the capability of the method for volumetric ''multitarget quantification'' and for the assessment of antiangiogenic therapy response has rather been investigated. Therefore, we generated cyanoacrylate microbubbles linked to vascular endothelial growth factor receptor 2 (VEGFR2) and A v B 3 integrin binding ligands and quantified their accumulation in squamous cell carcinoma xenografts (HaCaT-ras-A-5RT3) in mice with the quantitative volumetric ultrasound scanning technique, sensitive particle acoustic quantification. Specificity of VEGFR2 and A v B 3 integrin binding microbubbles was shown, and changes in marker expression during matrix metalloproteinase inhibitor treatment were investigated. In tumors, accumulation of targeted microbubbles was significantly higher compared with nonspecific ones and could be inhibited competitively by addition of the free ligand in excess. Also, multimarker imaging could successfully be done during the same imaging session. Molecular ultrasound further indicated a significant increase of VEGFR2 and A v B 3 integrin expression during tumor growth and a considerable decrease in both marker densities after matrix metalloproteinase inhibitor treatment. Histologic data suggested that the increasing VEGFR2 and A v B 3 integrin concentrations in tumors during growth are related to an up-regulation of its expression by the endothelial cells, whereas its decrease under therapy is more related to the decreasing relative vessel density. In conclusion, targeted ultrasound appears feasible for the longitudinal molecular profiling of tumor angiogenesis and for the sensitive assessment of therapy effects in vivo.
Contrast-enhanced ultrasound has shown convincing results for monitoring vessel morphology, surrogate markers of vascularization and changes in molecular marker expression in oncological and cardiovascular diseases. Ultrasound contrast agents have the ability to increase the backscattering signal intensity of an ultrasound pulse. An interesting class of ultrasound contrast agents are gas filled microbubbles, which can be synthesized by external bubble encapsulation using sugar matrices or microspheres consisting of lipids or polymers with or without surfactant and by selecting gases with low blood solubility and diffusion coefficient such as perfluorocarbons or sulphur hexafluoride. Ultrasound contrast agents can be classified according to the rigidity of their shell. Soft-shell microbubbles are coated with a thin monolayer of surfactant molecules such as palmitic acid or phospholipids and are very sensitive to pressure changes. Hard-shell microbubbles have a rigid shell made of polymers such as polycyanoacrylate, which dramatically increases their stability. Depending on the acoustic properties of the microbubbles and on the purpose of the examination either destructive or non destructive methods are preferred for their detection. Microbubbles can be detected by destructive and non-destructive methods. Both soft- and hard-shell microbubbles coated with target-specific molecules can also be used for molecular imaging. Using target-specific approaches, the expression of several angiogenic markers such as VEGFR2, alphavbeta3 Integrins, ICAM, and E-selectin has been investigated in neoplastic and vascular diseases. This article summarizes the synthesis and properties of contrast agents as well as the indications, limitations and future potential of contrast-enhanced functional and molecular ultrasound.
In glioma cells with unstable intercellular contacts, inhibition of alpha(v)beta(3) integrins by antibodies and RGD and RGD-USPIO disintegrated intercellular contacts and reduced endocytotic activity, illustrating the risk of inducing biologic effects by using molecular MR probes.
Purpose:To assess vascular remodeling in tumors during two different antiangiogenic therapies with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and vessel size imaging and to evaluate the vessel size index (VSI) as a novel biomarker of therapy response. Materials and Methods:In two independent experiments, nude mice bearing human skin squamous cell carcinoma xenografts were treated with a vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or a multitargeted tyrosine kinase inhibitor (SU11248). Changes in tumor vascularity were assessed by DCE-MRI and vessel size imaging. DCE-MRI data were analyzed applying a two-compartment model (Brix), calculating the parameters Amplitude and k ep . Results:For both experiments Amplitude decreased significantly in treated tumors while k ep did not change significantly. VSI showed controversial results. VSI was significantly increased in SU11248-treated A431 tumors, whereas no changes were found in bevacizumab-treated HaCaT-ras-A-5RT3 tumors. Immunohistology confirmed these results and suggest differences in the maturation of tumor vascularization as a possible explanation.Conclusion: DCE-MRI and vessel size imaging provide reliable and supplementing biomarkers of antiangiogenic therapy response. The results of both methods are in excellent agreement with histology. Nevertheless, our results also indicate that vascular remodeling is complex and that a uniform response cannot be expected for different tumors and therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.