Iso-surfaces or level-sets provide an effective and frequently used means for feature visualization. However, they are restricted to simple features for uni-variate data. The approach does not scale when moving to multi-variate data or when considering more complex feature definitions. In this paper, we introduce the concept of traits and feature level-sets, which can be understood as a generalization of level-sets as it includes iso-surfaces, and fiber surfaces as special cases. The concept is applicable to a large class of traits defined as subsets in attribute space, which can be arbitrary combinations of points, lines, surfaces and volumes. It is implemented into a system that provides an interface to define traits in an interactive way and multiple rendering options. We demonstrate the effectiveness of the approach using multi-variate data sets of different nature, including vector and tensor data, from different application domains.
In this work, we propose a controlled simplification strategy for degenerated points in symmetric 2D tensor fields that is based on the topological notion of robustness. Robustness measures the structural stability of the degenerate points with respect to variation in the underlying field. We consider an entire pipeline for generating a hierarchical set of degenerate points based on their robustness values. Such a pipeline includes the following steps: the stable extraction and classification of degenerate points using an edge labeling algorithm, the computation and assignment of robustness values to the degenerate points, and the construction of a simplification hierarchy. We also discuss the challenges that arise from the discretization and interpolation of real world data.
Tensors are used to describe complex physical processes in many applications. Examples include the distribution of stresses in technical materials, acting forces during seismic events, or remodeling of biological tissues. While tensors encode such complex information mathematically precisely, the semantic interpretation of a tensor is challenging. Visualization can be beneficial here and is frequently used by domain experts. Typical strategies include the use of glyphs, color plots, lines, and isosurfaces. However, data complexity is nowadays accompanied by the sheer amount of data produced by large-scale simulations and adds another level of obstruction between user and data. Given the limitations of traditional methods, and the extra cognitive effort of simple methods, more advanced tensor field visualization approaches have been the focus of this work. This survey aims to provide an overview of recent research results with a strong application-oriented focus, targeting applications based on continuum mechanics, namely the fields of structural, bio-, and geomechanics. As such, the survey is complementing and extending previously published surveys. Its utility is twofold: (i) It serves as basis for the visualization community to get an overview of recent visualization techniques. (ii) It emphasizes and explains the necessity for further research for visualizations in this context.
While volume rendering for scalar fields has been advanced into a powerful visualisation method, similar volumetric representations for tensor fields are still rare. The complexity of the data challenges not only the rendering but also the design of the transfer function. In this paper we propose an interface using glyph widgets to design a transfer function for the rendering of tensor data sets. Thereby the transfer function (TF) controls a volume rendering which represents sought after tensor-features and a texture that conveys directional information. The basis of the design interface is a two-dimensional projection of the attribute space. Characteristicrepresentatives in the form of glyphs support an intuitive navigation through the attribute space. We provide three different options to select the representatives: automatic selection based on attribute space clustering, uniform sampling of the attribute space, or manually selected representatives. In contrast to glyphs placed into the 3D volume, we use glyphs with complex geometry as widgets to control the shape and extent of the representatives. In the final rendering the glyphs with their assigned colors play a similar role as a legend in an atlas like representation. The method provides an overview of the tensor field in the 3D volume at the same time as it allows the user to explore the tensor field in an attribute space. We demonstrate the flexibility of our approach on tensor fields for selected data sets with very different characteristics.
Iso-surfaces or level-sets provide an effective and frequently used means for feature visualization. However, they are restricted to simple features for uni-variate data. The approach does not scale when moving to multi-variate data or when considering more complex feature definitions. In this paper, we introduce the concept of traits and feature level-sets, which can be understood as a generalization of level-sets as it includes iso-surfaces, and fiber surfaces as special cases. The concept is applicable to a large class of traits defined as subsets in attribute space, which can be arbitrary combinations of points, lines, surfaces and volumes. It is implemented into a system that provides an interface to define traits in an interactive way and multiple rendering options. We demonstrate the effectiveness of the approach using multi-variate data sets of different nature, including vector and tensor data, from different application domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.