The treatment of the recently reported potassium salt (S)-N,N'-bis-(1-phenylethyl)benzamidinate ((S)-KPEBA) and its racemic isomer (rac-KPEBA) with anhydrous lanthanide trichlorides (Ln = Sm, Er, Yb, Lu) afforded mostly chiral complexes. The tris(amidinate) complex [{(S)-PEBA}(3)Sm], bis(amidinate) complexes [{Ln(PEBA)(2)(μ-Cl)}(2)] (Ln = Sm, Er, Yb, Lu), and mono(amidinate) compounds [Ln(PEBA)(Cl)(2)(thf)(n)] (Ln = Sm, Yb, Lu) were isolated and structurally characterized. As a result of steric effects, the homoleptic 3:1 complexes of the smaller lanthanide atoms Yb and Lu were not accessible. Furthermore, chiral bis(amidinate)-amido complexes [{(S)-PEBA}(2)Ln{N(SiMe(3))(2)}] (Ln = Y, Lu) were synthesized by an amine-elimination reaction and salt metathesis. All of these chiral bis- and tris(amidinate) complexes had additional axial chirality and they all crystallized as diastereomerically pure compounds. By using rac-PEBA as a ligand, an achiral meso arrangement of the ligands was observed. The catalytic activities and enantioselectivities of [{(S)-PEBA}(2)Ln{N(SiMe(3))(2)}] (Ln = Y, Lu) were investigated in hydroamination/cyclization reactions. A clear dependence of the rate of reaction and enantioselectivity on the ionic radius was observed, which showed higher reaction rates but poorer enantioselectivities for the yttrium compound.
International audienceThe monoamidinato bisborohydride rare earth complexes [Ln{(S)-PEBA}(BH4)2(THF)2] (Ln = Sc (1), La (2), Nd (3), Sm (4), Yb (5), Lu (6)) were isolated as crystalline materials upon treatment of potassium N,N′-bis((S)-1-phenylethyl)benzamidinate ((S)-KPEBA) with the homoleptic trisborohydrides [Sc(BH4)3(THF)2] and [Ln(BH4)3(THF)3] (Ln = La, Nd, Sm, Yb, Lu), respectively. Compounds 1-6 are unique examples of enantiopure borohydride complexes of the rare earth metals. Different ionic radii of the metal centers were selected to cover the whole range of these elements with respect to the extent of the coordination sphere. All new complexes were thoroughly characterized by 1H, 13C{1H}, 11B, and 15N NMR and IR spectroscopies, also including single-crystal X-ray diffraction structure determination of each compound. The scandium, lanthanum, samarium, and lutetium complexes 1, 2, 4, and 6 were found active in the ring-opening polymerization of rac-lactide under mild operating conditions, providing atactic α,ω-dihydroxytelechelic poly(lactic acid) (PLA; Mn,SEC up to 18 800 g*mol-1). Most of the polymerizations proceed with a certain degree of control that is directed by molar mass values and relatively narrow dispersities (1.10 < ĐM < 1.34), within a moderate monomer-to-initiator ratio
Transition-metal carbene complexes have been known for about 50 years and widely applied as reagents and catalysts in organic transformations. In contrast, the carbene chemistry of the rare-earth metals is much less developed, but has attracted the research interest in the recent years. In this field rare-earth-metal alkylidene, especially methylidene, compounds are an emerging class of compounds with a high synthetic potential for organometallic chemistry and maybe in the future also for organic chemistry.
Bis(phosphinimino)methanide bisborohydride complexes of lanthanum, yttrium and lutetium, [{CH (PPh 2 NSiMe 3 ) 2 }La(BH 4 ) 2 (THF)] ( 1) and [{CH(PPh 2 NSiMe 3 ) 2 }Ln(BH 4 ) 2 ] (Ln ¼ Y (2), Lu (3)), have been investigated in the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). All three initiators afforded linear poly(trimethylene carbonate)s (PTMCs) in toluene at 23 C. 1 H NMR analyses of the polycarbonates revealed the formation of a-hydroxy,u-formate telechelic PTMCs, as previously observed in the ROP of TMC initiated by [Sm(BH 4 ) 3 (THF) 3 ]. This suggested the nonreduction of the carbonyl of the carbonate group in the active species by the BH 3 moiety, as hinted by this same prior experimental work. Formation of a,u-dihydroxy PTMCs, resulting from the reduction of the carbonyl, is also likely and cannot be ruled out from experimental data. DFT investigations, focused on the initiation step, supported two energetically (thermodynamically and kinetically) favorable and similar reaction pathways leading to two distinct end-functionalized PTMCs. Depending on whether reduction of the carbonyl occurred or not, a,u-dihydroxy or a-hydroxy,u-formate telechelic PTMCs were predicted, respectively. Although these two calculated feasible approaches are very close in energy, the formation of the latter heterofunctionalized a-hydroxy,u-formate telechelic PTMCs is slightly preferred computationally. This first in silico study on the mechanism of the ROP of a cyclic carbonate revealed several features without any precedent in the ROP of a cyclic ester (3caprolactone or lactide). An easily accessible (no activation barrier) intermediate in which BH 3 is trapped by the intracyclic oxygen of a non-opened TMC ring has been located for the first time. The low activation barrier for the opening of the TMC ring that proceeds without B-H activation is predicted to be competitive, affording the thermodynamically less stable BH 3 adduct. Finally, trapping of BH 3 by the nitrogen of the {CH(PPh 2 NSiMe 3 ) 2 } À ligand, in agreement with previous findings, highlights again the valuable role of this bisphosphiniminomethanide ligand.
The coordination structure in the solid state and solution complexation behavior of 6-(tetrazol-5-yl)-2,2'-bipyridine (HN4bipy) with samarium(III) was investigated as a model system for actinide(III)/lanthanide(III) separations. Two different solid 1:2 complexes, [Sm(N4bipy)2(OH)(H2O)2] (1) and [Sm(N4bipy)2(HCOO)(H2O)2] (2), were obtained from the reaction of samarium(III) nitrate with HN4bipy in isopropyl alcohol, resuspension in N,N-dimethylformamide (DMF), and slow crystallization. The formate anion coordinated to samarium in 2 is formed by decomposition of DMF to formic acid and dimethylamine. Time-resolved laser fluorescence spectroscopy (TRLFS) studies were performed with curium(III) and europium(III) by using HN4bipy as the ligand. Curium(III) is observed to form 1:2 and 1:3 complexes with increasing HN4bipy concentration; for europium(III), formation of 1:1 and 1:3 complexes is observed. Although the solid-state samarium complexes were confirmed as 1:2 species the 1:2 europium(III) solution complex in ethanol was not identified with TRLFS. The determined conditional stability constant for the 1:3 fully coordinated curium(III) complex species is more than 2 orders of magnitude higher than that for europium(III) (log β3[Cm(N4bipy)3] = 13.8 and log β3[Eu(N4bipy)3] = 11.1). The presence of added 2-bromodecanoic acid as a lipophilic anion source reduces the stability constant for formation of the 1:2 and 1:3 curium(III) complexes, but no ternary complexes were observed. The stability constants for the 1:3 metal ion-N4bipy complexes equate to a theoretical separation factor, SF(Cm(III)/Eu(III)) ≈ 500. However, the low solubility of the HN4bipy ligand in nonpolar solvents typically used in actinide-lanthanide liquid-liquid extractions prevents its use as a partitioning extractant until a more lipophilic HN4bipy-type ligand is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.