The ability of the white rot fungus Phanerochaete chrysosporium to mineralize 2,4,6-trinitrotoluene (TNT) was studied in the concentration range of 0.36 to 20.36 mg/liter. The initial rate of 14CO2 formation was 30%Yo in 4 days at 0.36 mg of [14C]TNT per liter and decreased to 5% in 4 days at 20.36 mg of [14C]TNT per liter. Such a pronounced inhibition was not observed when a mixture of [14C]2-amino-4,6-dinitrotoluene and
Within a screening program, 91 fungal strains belonging to 32 genera of different ecological and taxonomic groups (wood- and litter-decaying basidiomycetes, saprophytic micromycetes) were tested for their ability to metabolize and mineralize 2,4,6-trinitrotoluene (TNT). All these strains metabolized TNT rapidly by forming monoaminodinitrotoluenes (AmDNT). Micromycetes produced higher amounts of AmDNT than did wood- and litter-decaying basidiomycetes. A significant mineralization of [14C]TNT was only observed for certain wood- and litter-decaying basidiomycetes. The most active strains, Clitocybula dusenii TMb12 and Stropharia rugosa-annulata DSM11372 mineralized 42% and 36% respectively of the initial added [14C]TNT (100 microM corresponding to 4.75 microCi/l) to 14CO2 within 64 days. Micromycetes (deuteromycetes, ascomycetes, zygomycetes) proved to be unable to mineralize [14C]TNT significantly.
that it is possible to run a lignocellulose feedstock biorefi nery with a capacity of about 400 000 t/a wood in an economically and environmentally sound way. A conceptual design of a pilot plant was generated. Its realization and operation will become part of a follow-up project proposal.
This work presents laccase-mediated model reactions for coupling of reduced 2,4,6-trinitrotoluene (TNT) metabolites to an organic soil matrix. The structure of an isolated coupling product of 2,4-diamino-6-nitrotoluene (2,4-DANT) to guaiacol as humic constituent was determined. Among several structures, the compound was identified conclusively to be the trinuclear coupling product 5-(2-amino-3-methyl-4-nitroanilino)-3,3dimethoxy-4,4-diphenoquinone. The compound has a weight of 409 g mol ؊1 and may serve as a model reaction for the biogenic formation of bound residues in soil from TNT by coupling aminotoluenes (reduced TNT metabolites) to humic constituents. A linear correlation of the substrate consumption to the enzyme activity was detected. Based on this observation, the described reaction of 2,4-DANT coupling to guaiacol may be used for determination of laccase activity since the reaction was not inhibited by other compounds of culture supernatants. We propose a two-step mechanism for the coupling reaction because 2,4-DANT was not transformed by laccases in the absence of guaiacol and guaiacol oxidation was independent of the presence of 2,4-DANT. The first reaction step is a laccase-mediated dimerization of two guaiacol monomers with subsequent oxidation to a diphenoquinone. The second step is the nucleophilic addition of 2,4-DANT to the ortho position of the carbonyl group of the diphenoquinone structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.