The purpose of this study was to define the relationship between cardiac depression and morphological and immunological alterations in cardiac tissue after multiple trauma. However, the mechanistic basis of depressed cardiac function after trauma is still elusive. In a porcine polytrauma model including blunt chest trauma, liver laceration, femur fracture and haemorrhage serial trans-thoracic echocardiography was performed and correlated with cellular cardiac injury as well as with the occurrence of extracellular histones in serum. Postmortem analysis of heart tissue was performed 72 h after trauma. Ejection fraction and shortening fraction of the left ventricle were significantly impaired between 4 and 27 h after trauma. H-FABP, troponin I and extracellular histones were elevated early after trauma and returned to baseline after 24 and 48 h, respectively. Furthermore, increased nitrotyrosine and Il-1β generation and apoptosis were identified in cardiac tissue after trauma. Main structural findings revealed alteration of connexin 43 (Cx43) and co-translocation of Cx43 and zonula occludens 1 to the cytosol, reduction of α-actinin and increase of desmin in cardiomyocytes after trauma. The cellular and subcellular events demonstrated in this report may for the first time explain molecular mechanisms associated with cardiac dysfunction after multiple trauma.
Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40–50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R’s criteria (Replacement, Reduction and Refinement), established by Russell and Burch in ‘The Principles of Human Experimental Technique’ (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.
The free intracellular calcium concentration, [Ca2+]i, was studied in single myotubes using the fluorescent Ca2+ indicator fura-2. Myotubes cultured from satellite cells of small muscle specimens from Duchenne muscular dystrophy (DMD) patients were compared with human control myotubes and with myotubes cultured from MDX and control mouse muscle satellite cells. The resting [Ca2+]i levels in DMD and control myotubes were not significantly different, i.e. 104 +/- 26 nM (mean +/- SD, n = 190 cells from eight DMD patients) compared with 97 +/- 25 nM (175/seven controls) and were not significantly lower than the corresponding murine values (154 +/- 33 nM, n = 135 MDX myotubes; 159 +/- 34 nM, n = 135 controls). All myotubes reacted to 10 microM acetylcholine or 40 mM KCl with fast transient increases of [Ca2+]i. After application of a hyposmotic (130 mOsm) solution, [Ca2+]i was increased 1.5- to 3-fold within 2-3 min, the DMD myotubes tending to stronger reactions (significantly higher [Ca2+]i in 2 out of 6 cases). The response was usually transient, [Ca2+]i decreasing to the initial level within 10 min. Gadolinium (50 microM) reduced the response by 50%-70%, indicating that the osmotic shock increased Ca2+ influx. During exposure to high (15 mM) [Ca2+]e, [Ca2+]i of DMD and control cells was 1.5- to 2-fold higher. Adult muscle fibres from MDX mice and controls showed identical Ca2+ resting levels (n = 45 fibres from three mice in each case), but did not respond to decreased external osmolarity with a change in [Ca2+]i. The results indicate that lack of dystrophin in muscle fibres does not necessarily lead to increased [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)
ObjectiveSevere blunt chest trauma in humans is associated with high mortality rates. Whereas lung tissue damage and lung inflammation after blunt chest trauma have extensively been investigated, the traumatic and posttraumatic effects on the heart remain poorly understood. Therefore, the purpose of this study was to define cardiac injury patterns in an experimental blunt chest trauma model in rats.MethodsExperimental blunt chest trauma was induced by a blast wave in rats, with subsequent analysis of its effects on the heart. The animals were subjected either to a sham or trauma procedure. Systemic markers for cardiac injury were determined after 24 h and 5 days. Postmortem analysis of heart tissue addressed structural injury and inflammation 24 h and 5 days after trauma.ResultsPlasma levels of extracellular histones were elevated 24 h and 5 days after blunt chest trauma compared to sham-treated animals. In the heart, up-regulation of interleukin-1β 24 h after trauma and increased myeloperoxidase activity 24 h and 5 days after trauma were accompanied by reduced complement C5a receptor-1 expression 24 h after trauma. Histological analysis revealed extravasation of erythrocytes and immunohistochemical analysis alteration of the pattern of the gap-junction protein connexin 43. Furthermore, a slight reduction of α-actinin and desmin expression in cardiac tissue was found after trauma together with a minor increase in sarcoplasmatic/endoplasmatic reticlulum calcium-ATPase (SERCA) expression.ConclusionsThe clinically highly relevant rat model of blast wave-induced blunt chest trauma is associated with cardiac inflammation and structural alterations in cardiac tissue.
Macroscopic heart injury was 20 times more frequent in non-survivors than in survivors. Serum troponin levels correlated with mortality after multiple injury and therefore may represent a valuable prognostic marker in trauma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.