We study the combinatorial FIFO stack-up problem. In delivery industry, bins have to be stacked-up from conveyor belts onto pallets with respect to customer orders. Given k sequences q1, . . . , q k of labeled bins and a positive integer p, the aim is to stack-up the bins by iteratively removing the first bin of one of the k sequences and put it onto an initially empty pallet of unbounded capacity located at one of p stack-up places. Bins with different pallet labels have to be placed on different pallets, bins with the same pallet label have to be placed on the same pallet. After all bins for a pallet have been removed from the given sequences, the corresponding stack-up place will be cleared and becomes available for a further pallet. The FIFO stack-up problem is to find a stack-up sequence such that all pallets can be build-up with the available p stack-up places.In this paper, we introduce two digraph models for the FIFO stack-up problem, namely the processing graph and the sequence graph. We show that there is a processing of some list of sequences with at most p stack-up places if and only if the sequence graph of this list has directed pathwidth at most p − 1. This connection implies that the FIFO stack-up problem is NP-complete in general, even if there are at most 6 bins for every pallet and that the problem can be solved in polynomial time, if the number p of stack-up places is assumed to be fixed. Further the processing graph allows us to show that the problem can be solved in polynomial time, if the number k of sequences is assumed to be fixed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.