We present a disposable microarray hybridization chamber with an integrated micropump to speed up diffusion based reaction kinetics by generating convective flow. The time-to-result for the hybridization reaction was reduced from 60 min (standard protocol) down to 15 min for a commercially available microarray. The integrated displacement micropump is pneumatically actuated. It includes two active microvalves and is designed for low-cost, high volume manufacturing. The setup is made out of two microstructured polymer parts realized in polycarbonate (PC) separated by a 25 μm thermoplastic elastomer (TPE) membrane. Pump rate can be controlled between 0.3 μl s(-1) and 5.7 μl s(-1) at actuation frequencies between 0.2 Hz and 8.0 Hz, respectively.
We present a technology platform suitable for the mass production of laboratory-on-a-chip devices made of polymers with integrated active and passive components. The presented microfluidic platform with integrated valves and pumps for active flow management is realized with three layers consisting of two polymer parts separated by a thin elastic TPE (thermoplastic elastomer) membrane welded together in one step. The elastic TPE membrane acts as an integrated deflectable membrane layer between the two outer polymer layers, each made of a weldable thermoplastic polymer (polycarbonate). Valving is realized by applying pressure in a displacement chamber above a hydraulic channel causing the membrane to deform and to seal the channel. A pump is fabricated using a displacement chamber with a valve on the inlet and outlet. The presented components, namely valve and pump, show excellent behavior regarding response time, sealing quality, and pump rate needing only a low actuation pressure. The three-layer-stack is joined in a single process step by using laser welding, creating devices with high mechanical stability. This production technology fulfills the requirements of a high volume fabrication at high quality and has the potential to manufacture cost-efficient and reliable laboratory-on-a-chip systems. The used materials show a high chemical resistance against a broad range of commonly used liquids and good optical characteristics for the use in μTAS. This consistent technological approach represents a flexible platform for microfluidics with active components to be used in complex applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.