BackgroundAdrenocortical carcinoma (ACC) is a rare endocrine malignancy. Tumor-related glucocorticoid excess is present in ~60% of patients and associated with particularly poor prognosis. Results of first clinical trials using immune checkpoint inhibitors were heterogeneous. Here we characterize tumor-infiltrating T lymphocytes (TILs) in ACC in association with glucocorticoids as potential explanation for resistance to immunotherapy.MethodsWe performed immunofluorescence analysis to visualize tumor-infiltrating T cells (CD3+), T helper cells (CD3+CD4+), cytotoxic T cells (CD3+CD8+) and regulatory T cells (Tregs; CD3+CD4+FoxP3+) in 146 ACC tissue specimens (107 primary tumors, 16 local recurrences, 23 metastases). Quantitative data of immune cell infiltration were correlated with clinical data (including glucocorticoid excess).Results86.3% of ACC specimens showed tumor infiltrating T cells (7.7 cells/high power field (HPF)), including T helper (74.0%, 6.7 cells/HPF), cytotoxic T cells (84.3%, 5.7 cells/HPF) and Tregs (49.3%, 0.8 cells/HPF). The number of TILs was associated with better overall survival (HR for death: 0.47, 95% CI 0.25 to 0.87), which was true for CD4+− and CD8+subpopulations as well. In localized, non-metastatic ACC, the favorable impact of TILs on overall and recurrence-free survival was manifested even independently of ENSAT (European Network for the Study of Adrenal Tumors) stage, resection status and Ki67 index. T helper cells were negatively correlated with glucocorticoid excess (Phi=−0.290, p=0.009). Patients with glucocorticoid excess and low TILs had a particularly poor overall survival (27 vs. 121 months in patients with TILs without glucocorticoid excess).ConclusionGlucocorticoid excess is associated with T cell depletion and unfavorable prognosis. To reactivate the immune system in ACC by checkpoint inhibitors, an inhibition of adrenal steroidogenesis might be pivotal and should be tested in prospective studies.
SUMMARY1. Electrolyte transport across two preparations of mucosa from rat colon descendens was compared to determine what influence the submucosal plexus has on electrolyte transport. One preparation consisted of the mucosa, muscularis mucosae, and the submucosal tissue and is referred to as the mucosa-submucosa preparation. The second preparation obtained by further blunt dissection ofthe mucosa-submucosa preparation consisted of only the mucosa and the circular muscle layer of muscularis mucosae and is referred to as the mucosa preparation.2. Histological studies showed that the submucosal tissue and the longitudinal layer of muscularis mucosae could be removed leaving only the mucosa and the circular layer of muscularis mucosae. The extensive neuronal network of the submucosa was shown when the submucosal tissue and longitudinal muscle layer of muscularis mucosae, which were removed, were stained histochemically for acetylcholinesterase activity.3. Both the mucosa-submucosa and mucosa preparations absorbed Na+ and Clwhen short-circuited. However, Na+ and Cl-absorption were significantly higher in the mucosa preparation. The increase in Na+ and Cl-transport in the mucosa preparation was accompanied with a decrease in the short-circuit current (I,,), the open-circuit potential difference (p.d.) and the transmural tissue conductance (Gt) when compared to the mucosa-submucosa preparation.4. Tetrodotoxin (TTX), a neurotoxin which blocks specifically the propagation of action potentials in excitable tissues, dose-dependently decreased ISC and p.d. in the mucosa-submucosa preparation when added to the serosal solution. The half-maximal effective concentration ofTTX was 5 nm and maximal effective concentration 100 nM. TTX (1 ,UM) had no effect on ISC or p.d. when added to the mucosal solution. The decrease in ISC and p.d. caused by TTX in the mucosa-submucosa preparation was accompanied with an increase in Na+ and Cl-absorption. TTX caused only a small decrease in ISC and p.d. in uhe mucosa preparation. However, there was no measurable change in Na+ and Cl-transport in the mucosa preparation.5. The results suggest that spontaneously active neurones from the submucosal plexus have an inhibitory influence on the mucosa. Physical removal of the submucosal plexus or pharmacological blockade of the neurones within the mucosa-H. ANDRES AND OTHERS submucosa preparation by TTX led to enhanced absorption, suggesting that the set point of the mucosa for electrolyte transport is at or near a maximal absorptive state. Regulation or modulation of the mucosa may therefore occur by mechanisms that lower this set point, causing an inhibition of absorption of electrolytes.
Context Urine steroid metabolomics, combining mass spectrometry-based steroid profiling and machine learning, has been described as a novel diagnostic tool for detection of adrenocortical carcinoma (ACC). Objective, Design, Setting This proof-of-concept study evaluated the performance of urine steroid metabolomics as a tool for postoperative recurrence detection after microscopically complete (R0) resection of ACC. Patients and Methods 135 patients from 14 clinical centers provided postoperative urine samples, which were analyzed by gas chromatography–mass spectrometry. We assessed the utility of these urine steroid profiles in detecting ACC recurrence, either when interpreted by expert clinicians or when analyzed by random forest, a machine learning-based classifier. Radiological recurrence detection served as the reference standard. Results Imaging detected recurrent disease in 42 of 135 patients; 32 had provided pre- and post-recurrence urine samples. 39 patients remained disease-free for ≥3 years. The urine “steroid fingerprint” at recurrence resembled that observed before R0 resection in the majority of cases. Review of longitudinally collected urine steroid profiles by 3 blinded experts detected recurrence by the time of radiological diagnosis in 50% to 72% of cases, improving to 69% to 92%, if a preoperative urine steroid result was available. Recurrence detection by steroid profiling preceded detection by imaging by more than 2 months in 22% to 39% of patients. Specificities varied considerably, ranging from 61% to 97%. The computational classifier detected ACC recurrence with superior accuracy (sensitivity = specificity = 81%). Conclusion Urine steroid metabolomics is a promising tool for postoperative recurrence detection in ACC; availability of a preoperative urine considerably improves the ability to detect ACC recurrence.
Conditions of impaired adrenal function and tissue destruction, such as in Addison's disease, and treatment resistance of adrenocortical carcinoma (ACC) necessitate improved understanding of the pathophysiology of adrenal cell death. Due to relevant oxidative processes in the adrenal cortex, our study investigated the role of ferroptosis, an irondependent cell death mechanism and found high adrenocortical expression of glutathione peroxidase 4 (GPX4) and long-chain-fatty-acid CoA ligase 4 (ACSL4) genes, key factors in the initiation of ferroptosis. By applying MALDI mass spectrometry imaging to normal and neoplastic adrenocortical tissue, we detected high abundance of arachidonic and adrenic acid, two long chain polyunsaturated fatty acids which undergo peroxidation during ferroptosis. In three available adrenal cortex cell models (H295R, CU-ACC1 and CU-ACC-2) a high susceptibility to GPX4 inhibition with RSL3 was documented with EC 50 values of 5.7 × 10 −8 , 8.1 × 10 −7 and 2.1 × 10 −8 M, respectively, while all nonsteroidogenic cells were significantly less sensitive. Complete block of GPX4 activity by RSL3 led to ferroptosis which was completely reversed in adrenal cortex cells by inhibition of steroidogenesis with ketoconazole but not by blocking the final step of cortisol synthesis with metyrapone. Mitotane, the only approved drug for ACC did not induce ferroptosis, despite strong induction of lipid peroxidation in ACC cells. Together, this report is the first to demonstrate extraordinary sensitivity of adrenal cortex cells to ferroptosis dependent on their active steroid synthetic pathways. Mitotane does not induce this form of cell death in ACC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.