By combining scanning transmission electron microscopy, CO chemisorption, and energy dispersive X-ray spectroscopy with CO and NO oxidation light-off measurements we investigated deactivation phenomena of Pt/Al2O3, Pd/Al2O3, and Pt-Pd/Al2O3 model diesel oxidation catalysts during stepwise hydrothermal aging. Aging induces significant particle sintering that results in a decline of the catalytic activity for all catalyst formulations. While the initial aging step caused the most pronounced deactivation and sintering due to Ostwald ripening, the deactivation rates decline during further aging and the catalyst stabilizes at a low level of activity. Most importantly, we observed pronounced morphological changes for the bimetallic catalyst sample: hydrothermal aging at 750 °C causes a stepwise transformation of the Pt-Pd alloy via core-shell structures into inhomogeneous agglomerates of palladium and platinum. Our study shines a light on the aging behavior of noble metal catalysts under industrially relevant conditions and particularly underscores the highly complex transformation of bimetallic Pt-Pd diesel oxidation catalysts during hydrothermal treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.