Alveolar monocyte influx requires adherence and transmigration through the vascular endothelium, extracellular matrix, and alveolar epithelium. For investigating the monocyte migratory process across the epithelial barrier, we employed both the A549 cell line and isolated human alveolar epithelial cells. Under baseline conditions, spontaneous bidirectional transepithelial monocyte migration was noted, which was dose-dependently increased in the presence of the monocyte chemoattractant protein-1. TNF-α stimulation of the alveolar epithelium provoked the polarized apical secretion of monocyte chemoattractant protein-1 and RANTES and up-regulation of ICAM-1 and VCAM-1 expression, accompanied by markedly enhanced transepithelial monocyte traffic in the basal-to-apical direction. Multiple adhesive interactions were noted to contribute to the enhanced monocyte traffic across the TNF-α-stimulated alveolar epithelium: these included the β2 integrins CD11a, CD11b, CD11c/CD18, the β1 integrins very late Ag (VLA)-4, -5, and -6, and the integrin-associated protein CD47 on monocytes, as well as ICAM-1, VCAM-1, CD47, and matrix components on the epithelial side. In contrast, spontaneous monocyte migration through unstimulated epithelium depended predominantly on CD11b/CD18 and CD47, with some additional contribution of VLA-4, -5, and -6. In summary, unlike transendothelial monocyte traffic, for which β1 and β2 integrins are alternative mechanisms, monocyte migration across the alveolar epithelium largely depends on CD11b/CD18 and CD47 but required the additional engagement of the β1 integrins for optimal migration. In response to inflammatory challenge, the alveolar epithelium orchestrates enhanced monocyte traffic to the apical side by polarized chemokine secretion and up-regulation of ICAM-1 and VCAM-1.
In this uncontrolled pilot study, hospital admission and diabetes adapted diet followed by oatmeal intervention achieved a approximately 40% reduction of insulin dosage required to achieve controlled glucose levels. This effect was conserved after a 4 week outpatient phase with normal diet.
Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability (HRV) was assessed by ECG. The vagus nerve was electrically stimulated (BD + STIM) during BD. Intestine, kidney, heart and liver were recovered after 6 hours. Affymetrix chipanalysis was performed on intestinal RNA. Quantitative PCR was performed on all organs. Serum was collected to assess TNFa concentrations. Renal transplantations were performed to address the influence of vagus nerve stimulation on graft outcome. HRV was significantly lower in BD animals. Vagus nerve stimulation inhibited the increase in serum TNFa concentrations and resulted in down-regulation of a multiplicity of pro-inflammatory genes in intestinal tissue. In renal tissue vagal stimulation significantly decreased the expression of E-selectin, IL1b and ITGA6. Renal function was significantly better in recipients that received a graft from a BD + STIM donor. Our study demonstrates impairment of the parasympathetic nervous system during BD and inhibition of serum TNFa through vagal stimulation. Vagus nerve stimulation variably affected gene expression in donor organs and improved renal function in recipients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.