In this paper we discuss multigrid methods for ill-conditioned symmetric positive definite block Toeplitz matrices. Our block Toeplitz systems are general in the sense that the individual blocks are not necessarily Toeplitz, but we restrict our attention to blocks of small size. We investigate how transfer operators for prolongation and restriction have to be chosen such that our multigrid algorithms converge quickly. We point out why these transfer operators can be understood as block matrices as well and how they relate to the zeroes of the generating matrix function. We explain how our new algorithms can also be combined efficiently with the use of a natural coarse grid operator. We clearly identify a class of ill-conditioned block Toeplitz matrices for which our algorithmic ideas are suitable. In the final section we present an outlook to well-conditioned block Toeplitz systems and to problems of vector Laplace type. In the latter case the small size blocks can be interpreted as degrees of freedom associated with a node. A large number of numerical experiments throughout the article confirms convincingly that our multigrid solvers lead to optimal order convergence. (2000): 65N55, 65F10.
AMS subject classification
SUMMARYIterative solvers are widely regarded as the most efficient way to solve the very large linear systems arising from finite element models. Their memory requirements are small compared to those for direct solvers. Consequently, there is a major interest in iterative methods and particularly the preconditioning necessary to achieve rapid convergence. In this paper we present new element-based preconditioners specifically designed for linear elasticity and elasto-plastic problems. The study presented here is restricted to simple associated plasticity but should find wide application in other plasticity models used in geotechnics.
We study the efficient computation of power indices for weighted voting games using the paradigm of dynamic programming. We survey the state-of-the-art algorithms for computing the Banzhaf and Shapley-Shubik indices and point out how these approaches carry over to related power indices. Within a unified framework, we present new efficient algorithms for the Public Good index and a recently proposed power index based on minimal winning coalitions of smallest size, as well as a very first method for computing Johnston indices for weighted voting games efficiently. We introduce a software package providing fast C++ implementations of all the power indices mentioned in this article, discuss computing times, as well as storage requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.