Tomato (Solanum lycopersicum) is a widely consumed fruit all around the world. The industrial exploitation of tomato generates a lot of waste. Most of the utilization of tomato seeds waste is focused on animal feeding, as well as a food ingredient aimed to increase the protein content, and raw material for some organic bioactive component extraction. The aim of this work was to evaluate the techno-functional properties of tomato seed meal (TSM) and its nutraceutical properties after applying defatting processing (TSMD), and to evaluate the nutraceutical properties after a fermentation processing (TSMDF) by Lactobacillus sp. The results showed that, at alkaline conditions (pH 8–9), the techno-functional properties for TSM and TSMD improved. In comparison with TSM, TSMD showed higher water holding capacity (WHC ≈32%), higher oil holding capacity (OHC ≈13%), higher protein solubility (49–58%), more than 10 times foaming activity (FA), more than 50 times foam stability (Fst), as well as an improved emulsifying activity (EA) and emulsion stability (Est) wich were better at pH 9. Regarding the nutraceutical properties, after 48 h of fermentation (TSMDF), the antioxidant activity was doubled and a significant increase in the iron chelating activity was also observed. During the same fermentation time, the highest angiotensin-converting enzyme inhibition (ACEI) was achieved (IC50 73.6 μg/mL), more than 10 times higher than TSMD, which leads to suggest that this fermented medium may be a powerful antihypertensive. Therefore, the strategy proposed in this study could be an option for the exploitation of tomato wastes.
The insertion of peptides is a biotechnology tool widely used to improve the nutraceutical properties of proteins. Because the effect of these insertions in protein stability and function is difficult to predict, it should be determined experimentally. In this study, we created two variants of amarantin acidic subunit and analyzed them along with other four proteins reported previously. We measured their response against two destabilizing agents: temperature and urea. The six proteins presented the insertion of antihypertensive peptides (VYVYVYVY or RIPP) in the variable regions of the protein. We observed that their effect strongly depended on the site of the insertion. The insertion in the variable region I stabilized the protein both thermally and chemically, but it affected the inhibitory activity of the angiotensin-converting enzyme in vitro. In contrast, insertions in other three regions were severely destabilizing, producing molten globules. Our findings reveal that the insertion of bioactive peptides in variable regions of a protein can increase or decrease the protein's thermal and chemical stability and that these conformational changes may also alter its final activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.