Partial migration, a phenomenon wherein only some individuals within a population migrate, is taxonomically widespread. While well-studied in birds and fish, partial migration in large herbivores has come into the spotlight only recently due to the decline of migratory behavior in ungulate species around the world. We explored whether partial migration in ungulates is maintained at the population level through frequency-dependence, an environmental-genetic threshold, or a conditional strategy. Through a review of studies describing individual variation in migratory behavior, we then addressed how density-dependent and -independent factors such as social constraints, competition for forage, and escape from predators or pathogens, alone or together, could lead to occurrence of both migrants and residents within a population. We searched for evidence that intrinsic and extrinsic factors could combine with genetic predispositions and individual differences in temperament or life experience to promote migratory tendencies of individuals. Despite the long-held assumption for ungulates that migration is a fixed behavior of individuals, evidence suggested that flexibility in migratory behavior is more common than previously thought. Partial migration maintained by a conditional strategy results in changes in movement tactics as state-dependent responses of individuals. Data are needed to empirically demonstrate which factors determine the relative costs and benefits to using migratory vs. resident tactics. We outline what types of long-term data could address this need and urge those studying migration to meet these challenges in the interest of conserving partially migratory populations.
Loss of migratory behavior or shifts in migratory ranges are growing concerns to wildlife managers. How ungulates prioritize safety from predators at the expense of high‐quality foraging opportunities during calving may be key to understanding these shifts and long‐term reproductive success. We compared trade‐offs in selection for forage and predation risk by elk (Cervus canadensis) following 3 migratory tactics (western and eastern migration and resident) during 2 time periods in a declining (by almost 70% from 2002–2016), partially migratory elk population adjacent to Banff National Park in Alberta, Canada. We hypothesized that regardless of migratory tactic, maternal elk would show stronger trade‐offs between high‐quality foraging associated with higher predation risk and forage resources of lower‐quality yet lower risk on calving ranges than on ranges used during summer because of vulnerability of their offspring. Additionally, we hypothesized these trade‐offs would occur at high (2002–2006) and low (2013–2016) elk population sizes. We used a machine‐learning algorithm to predict dates of parturition based on global positioning system (GPS) movements of elk equipped with vaginal implants (n = 60) and predictions were within 1.43 ± 0.85 (SE) days of the known date. We applied the model to an additional 58 GPS‐collared elk without vaginal implants. Based on changes in localized movements, we defined calving areas as the 26 days post‐parturition and compared habitat characteristics of calving areas to 10 similar‐sized areas centered on random locations during summer for the same individual in a latent selection framework. Across the 2 time periods, parturition occurred from 8 May–11 July with median parturition dates differing among migratory tactics and residents shifting towards an earlier parturition date in the later period. All elk, regardless of migratory tactic and time period, selected calving areas with greater forage resources than were available on areas used during summer, with no evidence for greater selection of areas that reduced predation risk at the expense of higher‐quality foraging. Calving season selection for areas with abundant forage exposed western migrants to high risk of bear (Ursus spp.) predation, residents to high risk of wolf (Canis lupus) predation, and eastern migrants to low risk of bear and wolf predation. Patterns in exposure to predation risk during calving between migratory tactics were consistent with the recent decline in western migrants and increase in eastern migrants, implying that conditions on calving areas contributed to observed changes in the number of elk following these tactics. © 2021 The Wildlife Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.