Standardized terms and methods have long been recognized as crucial to reduce measurement error and increase reliability in anthropometry. The successful prior use of craniometric landmarks makes extrapolation of these landmarks to the soft tissue context, as analogs, intuitive for forensic craniofacial analyses and facial photogrammetry. However, this extrapolation has not, so far, been systematic. Instead, varied nomenclature and definitions exist for facial landmarks, and photographic analyses are complicated by the generalization of 3D craniometric landmarks to the 2D face space where analogy is subsequently often lost, complicating anatomical assessments. For example, landmarks requiring palpation of the skull or the examination of the 3D surface typology are impossible to legitimately position; similar applies to median landmarks not visible in lateral photographs. To redress these issues without disposing of the craniometric framework that underpins many facial landmarks, we provide an updated and transparent nomenclature for facial description. This nomenclature maintains the original craniometric intent (and base abbreviations) but provides clear distinction of ill-defined (quasi) landmarks in photographic contexts, as produced when anatomical points are subjectively inferred from shape-from-shading information alone.
The numerical description of skeletal morphology enables forensic anthropologists to conduct objective, reproducible, and structured tests, with the added capability of verifying morphoscopic-based analyses. One technique that permits comprehensive quantification of outline shape is elliptical Fourier analysis. This curve fitting technique allows a form's outline to be approximated via the sum of multiple sine and cosine waves, permitting the profile perimeter of an object to be described in a dense (continuous) manner at a user-defined level of precision. A large amount of shape information (the entire perimeter) can thereby be collected in contrast to other methods relying on sparsely located landmarks where information falling in between the landmarks fails to be acquired. First published in 1982, elliptical Fourier analysis employment in forensic anthropology from 2000 onwards reflects a slow uptake despite large computing power that makes its calculations easy to conduct. Without hurdles arising from calculation speed or quantity, the slow uptake may partly reside with the underlying mathematics that on first glance is extensive and potentially intimidating. In this paper, we aim to bridge this gap by pictorially illustrating how elliptical Fourier harmonics work in a simple step-by-step visual fashion to facilitate universal understanding and as geared towards increased use in forensic anthropology. We additionally provide a short review of the method's utility for osteology, a summary of past uses in forensic anthropology, and software options for calculations that largely save the user the trouble of coding customized routines.
Facial soft tissue thicknesses (FSTTs) hold an important role in craniofacial identification, forming the underlying quantitative basis of craniofacial superimposition and facial approximation methods. It is, therefore, important that patterns in FSTTs be correctly described and interpreted. In prior FSTT literature, small statistically significant differences have almost universally been overemphasized and misinterpreted to reflect sex and ancestry effects when they instead largely encode nuisance statistical noise. Here we examine FSTT data and give an overview of why P-values do not mean everything. Scientific inference, not mechanical evaluation of P, should be awarded higher priority and should form the basis of FSTT analysis. This hinges upon tempered consideration of many factors in addition to P, e.g., study design, sampling, measurement errors, repeatability, reproducibility, and effect size. While there are multiple lessons to be had, the underlying message is foundational: know enough statistics to avoid misinterpreting background noise for real biological effects.
Graphic exemplars of cranial sex and ancestry are essential to forensic anthropology for standardizing casework, training analysts, and communicating group trends. To date, graphic exemplars have comprised hand-drawn sketches, or photographs of individual specimens, which risks bias/subjectivity. Here, we performed quantitative analysis of photographic data to generate new photo-realistic and objective exemplars of skull form. Standardized anterior and left lateral photographs of skulls for each sex were analyzed in the computer graphics program Psychomorph for the following groups: South African Blacks, South African Whites, American Blacks, American Whites, and Japanese. The average cranial form was calculated for each photographic view, before the color information for every individual was warped to the average form and combined to produce statistical averages. These mathematically derived exemplars-and their statistical exaggerations or extremes-retain the high-resolution detail of the original photographic dataset, making them the ideal casework and training reference standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.