Certain species of seals are able to faithfully detect minute disturbances in ambient water solely using their whiskers, which is attributed to the whiskers' undulating three-dimensional (3D) morphology. While previous studies have examined effects of key morphology parameters on the wake using scaled-up whisker models, it is unclear how the wake behaves when induced by a real undulating seal whisker. Real seal whiskers usually have a diameter of about one millimeter and present variation in size and bending curvature along the length, which are not being considered in designing scaled-up whisker-like models. In addition, how the whisker orientation affects the induced wake and vortex shedding needs to be clarified. This work examines the wake flow characteristics generated by a real elephant seal whisker (of undulating morphology) and a California sea lion whisker (of smooth morphology) in laboratory water channels at Reynolds numbers of 110 and 390, using snapshot particle image velocimetry (PIV) and time-resolved PIV methods. Results indicate that the reversed flow region is remarkably reduced and turbulence intensities are greatly suppressed behind the undulating whisker compared to that of the smooth whisker, when the major axis of the whisker cross-section is parallel with the incoming flow (i.e., the angle of attack or AOA is 0 ). While the vortex shedding frequency is reduced for both the undulating and smooth whiskers, the power spectral density is substantially increased at an AOA ¼ 90 in comparison to AOA ¼ 0 . Regardless of the AOA, the power spectral density is approximately 40% lower in the wake of the undulating whisker than that of the smooth whisker, indicating the favorable hydrodynamic feature of the undulating whisker. The extraordinary hydrodynamic traits of undulating seal whiskers is promising for renovating aero-propulsion flow components and designing high-sensitivity underwater flow sensors.
When helicopters are to fly in icing conditions, it is necessary to consider the possibility of ice shed from the rotor blades. In 2013, a series of tests were conducted on a heated tail rotor at NASA Glenn's Icing Research Tunnel (IRT). The tests produced several shed events that were captured on camera. Three of these shed events were captured at a sufficiently high frame rate to obtain multiple images of the shed ice in flight that had a sufficiently long section of shed ice for analysis. Analysis of these shed events is presented and compared to an analytical Shedding Trajectory Model (STM). The STM is developed and assumes that the ice breaks off instantly as it reaches the end of the blade, while frictional and viscous forces are used as parameters to fit the STM. The trajectory of each shed is compared to that predicted by the STM, where the STM provides information of the shed group of ice as a whole. The limitations of the model's underlying assumptions are discussed in comparison to experimental shed events..
Multi-scale fractal grids can be considered to mimic the fractal characteristic of objects of complex appearance in nature, such as branching pulmonary network and corals in biology, river network, trees, and cumulus clouds in geophysics, and the large-scale structure of the universe in astronomy. Understanding the role that multiple length scales have in momentum and energy transport is essential for effective utilization of fractal grids in a wide variety of engineering applications. Fractal square grids, consisted of the basic square pattern, have been used for enhancing fluid mixing as a passive flow control strategy. While previous studies have solidified the dominant effect of the largest scale, effects of the smaller scales and the interaction of the range of scales on the generated turbulent flow remain unclear. This research is to determine the relationship between the fractal scales (varying with the fractal iteration N), the turbulence statistics of the flow and the pressure drop across the fractal square grids using well-controlled water-tunnel experiments. Instantaneous and ensemble-averaged velocity fields are obtained by a planar Particle Image Velocimetry (PIV) method for a set of fractal square grids (N = 1, 2 and 4) at Reynolds number of 3400. The static pressure drop across the fractal square grid is measured by a differential pressure transducer. Flow fields indicate that the multiple jets, wakes and the shear layers produced by the multiple scales of bars are the fundamental flow physics that promote momentum transport in the fractal grid generated turbulence. The wake interaction length scale model is modified to incorporate the effects of smaller scales and thereof interaction, by the effective mesh size M e f f and an empirical coefficient β. Effectiveness of a fractal square grid is assessed using the gained turbulence intensity and Reynolds shear stress level at the cost of pressure loss, which varies with the distance downstream. In light of the promising capability of the fractal grids to enhance momentum and energy transport, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.