Objectives: A commercially available CT guided robot offers enhanced abilities in planning, targeting, and confirming accurate needle placement. In this short communication, we describe our first UK experience of robotic Interventional Oncology procedures. Methods: We describe the device, discuss installation, operation, and report upon needle insertion success, accuracy (path deviation; PD and tip deviation; TD), number of adjustments, complications, and procedural success. Results: Nine patients (seven males), median age 66 years (range 43–79) were consented for biopsy or ablation between March and April 2021. Needle placement in biopsy was more accurate than ablation (1 vs 11 mm PD and 1 vs 20 mm TD) and required fewer adjustments (median 0 vs 5). No complications arose, and all procedures were successful (diagnostic material obtained or complete ablation at follow up). Conclusions: Short procedure times and very high levels of accuracy were readily achieved with biopsy procedures, although tumour ablation was less accurate which likely reflects higher procedural complexity. Advances in knowledge: Achieving highly accurate robotic biopsy with is feasible within a very short time span. Further work is required to maximise the potential of robotic guidance in tumour ablation procedures, which is likely due to higher complexity giving a longer learning curve.
Background Magnetic resonance imaging (MRI) can be used to target tumour components in biopsy procedures, while the ability to precisely correlate histology and MRI signal is crucial for imaging biomarker validation. Robotic MRI/computed tomography (CT) fusion biopsy offers the potential for this without in-gantry biopsy, although requires development. Methods Test–retest T1 and T2 relaxation times, attenuation (Hounsfield units, HU), and biopsy core quality were prospectively assessed (January–December 2021) in a range of gelatin, agar, and mixed gelatin/agar solutions of differing concentrations on days 1 and 8 after manufacture. Suitable materials were chosen, and four biopsy phantoms were constructed with twelve spherical 1–3-cm diameter targets visible on MRI, but not on CT. A technical pipeline was developed, and intraoperator and interoperator reliability was tested in four operators performing a total of 96 biopsies. Statistical analysis included T1, T2, and HU repeatability using Bland–Altman analysis, Dice similarity coefficient (DSC), and intraoperator and interoperator reliability. Results T1, T2, and HU repeatability had 95% limits-of-agreement of 8.3%, 3.4%, and 17.9%, respectively. The phantom was highly reproducible, with DSC of 0.93 versus 0.92 for scanning the same or two different phantoms, respectively. Hit rate was 100% (96/96 targets), and all operators performed robotic biopsies using a single volumetric acquisition. The fastest procedure time was 32 min for all 12 targets. Conclusions A reproducible biopsy phantom was developed, validated, and used to test robotic MRI/CT-fusion biopsy. The technique was highly accurate, reliable, and achievable in clinically acceptable timescales meaning it is suitable for clinical application.
Purpose Radiofrequency ablation (RFA) is a curative treatment option for small lung metastases, which conventionally involves multiple freehand manipulations until the treating electrode is satisfactorily positioned. Stereotactic and robotic guidance has been gaining popularity for liver ablation, although has not been established in lung ablation. The purpose of this study is to determine the feasibility, safety, and accuracy of robotic RFA for pulmonary metastases, and compare procedures with a conventional freehand cohort. Methods A single center study with prospective robotic cohort, and retrospective freehand cohort. RFA was performed under general anesthesia using high frequency jet ventilation and CT guidance. Main outcomes were (i) feasibility/technical success (ii) safety using Common Terminology Criteria for Adverse Events (iii) targeting accuracy (iv) number of needle manipulations for satisfactory ablation. Robotic and freehand cohorts were compared using Mann–Whitney U tests for continuous variables, and Fisher’s exact for categorical variables. Results Thirty-nine patients (mean age 65 ± 13 years, 20 men) underwent ablation of 44 pulmonary metastases at single specialist cancer center between July 2019 and August 2022. 20 consecutive participants underwent robotic ablation, and 20 consecutive patients underwent freehand ablation. All 20/20 (100%) robotic procedures were technically successful, and none were converted to freehand procedures. There were 6/20 (30%) adverse events in the robotic cohort, and 15/20 (75%) in the freehand cohort (P = 0.01). Robotic placement was highly accurate with 6 mm tip-to-target distance (range 0–14 mm) despite out-of-plane approaches, with fewer manipulations than freehand placement (median 0 vs. 4.5 manipulations, P < 0.001 and 7/22, 32% vs. 22/22, 100%, P < 0.001). Conclusions Robotic radiofrequency ablation of pulmonary metastases with general anesthesia and high frequency jet ventilation is feasible and safe. Targeting accuracy is high, and fewer needle/electrode manipulations are required to achieve a satisfactory position for ablation than freehand placement, with early indications of reduced complications.
MRI/CT fusion may enable MRI-guided biopsy without the requirement for dedicated interventional MRI facilities. Assessment and training in MRI/CT-fusion biopsy requires phantoms containing targets that can be seen on MRI but not on CT and can be biopsied. These requirements are not met using commercially available phantoms. We produced a phantom containing targets that can be appreciated on MRI but not CT, which is reproducible, can be biopsied and assessed for core adequacy. We successfully biopsied targets (1-3cm diameter) using a commercially available interventional robot equipped with work-in-progress MRI/CT-fusion software, including targets with steep out-of-plane angulations, within clinically reasonable timeframes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.