BackgroundNew methods are needed for research into non-model organisms, to monitor the effects of toxic disruption at both the molecular and functional organism level. We exposed earthworms (Lumbricus rubellus Hoffmeister) to sub-lethal levels of copper (10–480 mg/kg soil) for 70 days as a real-world situation, and monitored both molecular (cDNA transcript microarrays and nuclear magnetic resonance-based metabolic profiling: metabolomics) and ecological/functional endpoints (reproduction rate and weight change, which have direct relevance to population-level impacts).ResultsBoth of the molecular endpoints, metabolomics and transcriptomics, were highly sensitive, with clear copper-induced differences even at levels below those that caused a reduction in reproductive parameters. The microarray and metabolomic data provided evidence that the copper exposure led to a disruption of energy metabolism: transcripts of enzymes from oxidative phosphorylation were significantly over-represented, and increases in transcripts of carbohydrate metabolising enzymes (maltase-glucoamylase, mannosidase) had corresponding decreases in small-molecule metabolites (glucose, mannose). Treating both enzymes and metabolites as functional cohorts led to clear inferences about changes in energetic metabolism (carbohydrate use and oxidative phosphorylation), which would not have been possible by taking a 'biomarker' approach to data analysis.ConclusionMultiple post-genomic techniques can be combined to provide mechanistic information about the toxic effects of chemical contaminants, even for non-model organisms with few additional mechanistic toxicological data. With 70-day no-observed-effect and lowest-observed-effect concentrations (NOEC and LOEC) of 10 and 40 mg kg-1 for metabolomic and microarray profiles, copper is shown to interfere with energy metabolism in an important soil organism at an ecologically and functionally relevant level.
BackgroundNatural contamination and anthropogenic pollution of soils are likely to be major determinants of functioning and survival of keystone invertebrate taxa. Soil animals will have both evolutionary adaptation and genetically programmed responses to these toxic chemicals, but mechanistic understanding of such is sparse. The clitellate annelid Lumbricus rubellus is a model organism for soil health testing, but genetic data have been lacking.ResultsWe generated a 17,000 sequence expressed sequence tag dataset, defining ~8,100 different putative genes, and built an 8,000-element transcriptome microarray for L. rubellus. Strikingly, less than half the putative genes (43%) were assigned annotations from the gene ontology (GO) system; this reflects the phylogenetic uniqueness of earthworms compared to the well-annotated model animals. The microarray was used to identify adult- and juvenile-specific transcript profiles in untreated animals and to determine dose-response transcription profiles following exposure to three xenobiotics from different chemical classes: inorganic (the metal cadmium), organic (the polycyclic aromatic hydrocarbon fluoranthene), and agrochemical (the herbicide atrazine). Analysis of these profiles revealed compound-specific fingerprints which identify the molecular responses of this annelid to each contaminant. The data and analyses are available in an integrated database, LumbriBASE.ConclusionL. rubellus has a complex response to contaminant exposure, but this can be efficiently analysed using molecular methods, revealing unique response profiles for different classes of effector. These profiles may assist in the development of novel monitoring or bioremediation protocols, as well as in understanding the ecosystem effects of exposure.
Cross-resistance between neonicotinoids and pymetrozine in B. tabaci probably reflects the overexpression of a cytochrome-P450-dependent monooxygenase capable of metabolising both types of compound in spite of their apparent structural dissimilarity. Given the predominance of this mechanism in B. tabaci, both can contribute to resistance management but should be placed within the same treatment 'window'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.