BackgroundAn understanding of the evolution of potential signals from plants to the predators of their herbivores may provide exciting examples of co-evolution among multiple trophic levels. Understanding the mechanism behind the attraction of predators to plants is crucial to conclusions about co-evolution. For example, insectivorous birds are attracted to herbivore-damaged trees without seeing the herbivores or the defoliated parts, but it is not known whether birds use cues from herbivore-damaged plants with a specific adaptation of plants for this purpose.MethodologyWe examined whether signals from damaged trees attract avian predators in the wild and whether birds could use volatile organic compound (VOC) emissions or net photosynthesis of leaves as cues to detect herbivore-rich trees. We conducted a field experiment with mountain birches (Betula pubescens ssp. czerepanovii), their main herbivore (Epirrita autumnata) and insectivorous birds. Half of the trees had herbivore larvae defoliating trees hidden inside branch bags and half had empty bags as controls. We measured predation rate of birds towards artificial larvae on tree branches, and VOC emissions and net photosynthesis of leaves.Principal Findings and SignificanceThe predation rate was higher in the herbivore trees than in the control trees. This confirms that birds use cues from trees to locate insect-rich trees in the wild. The herbivore trees had decreased photosynthesis and elevated emissions of many VOCs, which suggests that birds could use either one, or both, as cues. There was, however, large variation in how the VOC emission correlated with predation rate. Emissions of (E)-DMNT [(E)-4,8-dimethyl-1,3,7-nonatriene], β-ocimene and linalool were positively correlated with predation rate, while those of highly inducible green leaf volatiles were not. These three VOCs are also involved in the attraction of insect parasitoids and predatory mites to herbivore-damaged plants, which suggests that plants may not have specific adaptations to signal only to birds.
Summary• Plant-emitted semi-volatile compounds have low vaporization rates at 20-25°C and may therefore persist on surfaces such as plant foliage. The passive adsorption of arthropod-repellent semi-volatiles to neighbouring foliage could convey associational resistance, whereby a plant's neighbours reduce damage caused by herbivores.• We found that birch (Betula spp.) leaves adsorb and re-release the specific arthropod-repelling C 15 semi-volatiles ledene, ledol and palustrol produced by Rhododendron tomentosum when grown in mixed association in a field setup. In a natural habitat, a higher concentration of ledene was released from birches neighbouring R. tomentosum than from birches situated > 5 m from R. tomentosum. Emission of a-humulene, a sesquiterpene synthesized by both Betula pendula and R. tomentosum, was also increased in R. tomentosum-neighbouring B. pendula.• In assessments for associational resistance, we found that the polyphagous green leaf weevils (Polydrusus flavipes) and autumnal moth (Epirrita autumnata) larvae both preferred B. pendula to R. tomentosum. P. flavipes also preferred birch leaves not exposed to R. tomentosum to leaves from mixed associations. In the field, a reduction in Euceraphis betulae aphid density occurred in mixed associations.• Our results suggest that plant ⁄ tree species may be protected by semi-volatile compounds emitted by a more herbivore-resistant heterospecific neighbour.
SummaryIn this work we analyzed the degradation of floral scent volatiles from Brassica nigra by reaction with ozone along a distance gradient and the consequences for pollinator attraction.For this purpose we used a reaction system comprising three reaction tubes in which we conducted measurements of floral volatiles using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. We also tested the effects of floral scent degradation on the responses of the generalist pollinator Bombus terrestris.The chemical analyses revealed that supplementing air with ozone led to an increasing reduction in the concentrations of floral volatiles in air with distance from the volatile source. The results revealed different reactivities with ozone for different floral scent constituents, which emphasized that ozone exposure not only degrades floral scents, but also changes the ratios of compounds in a scent blend. Behavioural tests revealed that floral scent was reduced in its attractiveness to pollinators after it had been exposed to 120 ppb O 3 over a 4.5 m distance.The combined results of chemical analyses and behavioural responses of pollinators strongly suggest that high ozone concentrations have significant negative impacts on pollination by reducing the distance over which floral olfactory signals can be detected by pollinators.
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses with complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant's volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. The pollutants, in particular, ozone, nitrogen oxides and hydroxyl radicals, also react with volatiles in the atmosphere. These reactions result in volatile breakdown products, which may themselves be perceived by community members as informative signals. In this review, we demonstrate the complex interplay among stresses, emitted signals, and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals.
Herbivore induced plant volatiles (HIPVs) are specific volatile organic compounds (VOC) that a plant produces in response to herbivory. Some HIPVs are only produced after damage, while others are also produced by intact plants, but in lower quantities. Among the known functions of HIPVs are within plant volatile signaling to activate systemic plant defenses, the priming and activation of defenses in neighboring plants and the attraction of natural enemies of herbivores. When released into the atmosphere a plant's control over the produced compounds ends. However, many of the HIPVs are highly reactive with atmospheric oxidants and their atmospheric life times could be relatively short, often only a few minutes. We summarise the potential ecological and atmospheric processes that involve the reaction products of HIPVs in their gaseous, liquid and solid secondary organic aerosol (SOA) forms, both in the atmosphere and after deposition on plant surfaces. A potential negative feedback loop, based on the reactions forming SOA from HIPVs and the associated stimulation of sun screening cloud formation is presented. This hypothesis is based on recent field surveys in the geographical areas facing the greatest degree of global warming and insect outbreaks. Furthermore, we discuss how these processes could benefit the individual plant or conspecifics that originally released the HIPVs into the atmosphere. Further ecological studies should aim to elucidate the possible reasons for biosynthesis of short-lived volatile compounds to have evolved as a response to external biotic damage to plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.