Contributions from the field of population biology hold promise for understanding and managing invasiveness; invasive species also offer excellent opportunities to study basic processes in population biology. Life history studies and demographic models may be valuable for examining the introduction of invasive species and identifying life history stages where management will be most effective. Evolutionary processes may be key features in determining whether invasive species establish and spread. Studies of genetic diversity and evolutionary changes should be useful for 0066-4162/01/1215-0305$14.00 305 Annu. Rev. Ecol. Syst. 2001.32:305-332. Downloaded from www.annualreviews.org by NORTH CAROLINA STATE UNIVERSITY on 09/26/12. For personal use only. 306 SAKAI ET AL.understanding the potential for colonization and establishment, geographic patterns of invasion and range expansion, lag times, and the potential for evolutionary responses to novel environments, including management practices. The consequences of biological invasions permit study of basic evolutionary processes, as invaders often evolve rapidly in response to novel abiotic and biotic conditions, and native species evolve in response to the invasion.
Experiments were conducted to test several methods for estimating low temperature thresholds for seed germination. Temperature responses of nine weeds common in annual agroecosystems were assessed in temperature gradient experiments. Species included summer annuals (Amaranthus albus, A. palmeri, Digitaria sanguinalis, Echinochloa crus-galli, Portulaca oleracea, and Setaria glauca), winter annuals (Hirschfeldia incana and Sonchus oleraceus), and Conyza canadensis, which is classified as a summer or winter annual. The temperature below which development ceases (Tbase) was estimated as the x-intercept of four conventional germination rate indices regressed on temperature, by repeated probit analysis, and by a mathematical approach. An overall Tbase estimate for each species was the average across indices weighted by the reciprocal of the variance associated with the estimate. Germination rates increased linearly with temperature between 15 degrees C and 30 degrees C for all species. Consistent estimates of Tbase were obtained for most species using several indices. The most statistically robust and biologically relevant method was the reciprocal time to median germination, which can also be used to estimate other biologically meaningful parameters. The mean Tbase for summer annuals (13.8 degrees C) was higher than that for winter annuals (8.3 degrees C). The two germination response characteristics, Tbase and slope (rate), influence a species' germination behaviour in the field since the germination inhibiting effects of a high Tbase may be offset by the germination promoting effects of a rapid germination response to temperature. Estimates of Tbase may be incorporated into predictive thermal time models to assist weed control practitioners in making management decisions.
Herbicide-resistant weed species have become widespread in recent years. Fifty-five weed species, including 40 dicots and 15 grasses, are known to have biotypes resistant to the triazine herbicides. One or more resistant species have arisen in 31 states of the United States, four provinces of Canada, 18 countries in Europe, and Israel, Japan, Australia, and New Zealand. Resistance to other classes of herbicides is more restricted in distribution and recent in detection but is becoming more widespread. Trifluralin resistance has spread in the southeastern United States and has been detected in Canada, while 11 species with biotypes resistant to paraquat have been reported around the world. Diclofop-methyl-resistant weed species are problems in cereal production in Australia and have been found in Oregon, South Africa, and the United Kingdom. Resistance to the substituted ureas also is present in the United Kingdom, West Germany, and Hungary. Within the last 2 yr, biotypes of at least four weed species resistant to the sulfonylurea herbicides have arisen following several annual applications of these herbicides in wheat. Some resistant biotypes have multiple resistance to different classes of herbicides, which greatly exacerbates the threat of resistance. Herbicide resistance has reached the level where more concerted efforts are needed in research, education, and development of effective management strategies to preserve herbicides as essential tools of agricultural technology.
Light regulates many facets of plant growth and development through the effects of quantity of total energy and of photons, spectral quality, duration, and photoperiod. Numerous techniques and types of equipment are available for quantifying light in plant canopies. The effect of total quantity of light on weed and crop productivity has been described for many cropping systems. Recent work has focused on other aspects of light, in particular, spectral distribution of light (quality), transient light (sunflecks), and plant adaptation to changing light environments. The altered spectral quality of light in a plant canopy affects plant growth and morphology, which in turn affect competition for light. Dynamic plant response to transient light is also important to canopy photosynthesis and productivity. Plant physiological and morphological adaptation to fluctuating light is another potential factor regulating weed/crop interactions. Current cropping practices such as using smother crops and narrow row spacing exploit plant light responses to promote crop growth and suppress weed growth. A better understanding of plant responses to light quality, transient light, and fluctuating light environments will lead to a better understanding of how to manipulate the light environment in crop canopies to improve weed management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.