Preclinical and clinical evidence suggest an association between alcoholism and the primary regulator of extracellular dopamine concentrations, the dopamine transporter (DAT). However, the nature of this association is unclear. We determined if ten days of voluntary alcohol self-administration followed by withdrawal could directly alter DAT function, or if genetically-mediated changes in DAT function and/or availability could influence vulnerability to alcohol abuse. Heterozygous (DAT+/-) and homozygous mutant (DAT-/-) and wildtype (DAT+/+) mice were allowed to consume 5% alcohol in a schedule-induced polydipsia (SIP) task. In vivo fixed potential amperometry in anesthetized mice was used to (1) identify functional characteristics of mesoaccumbens dopamine neurons related to genotype, including dopamine autoreceptor (DAR) sensitivity, DAT efficiency, and DAT capacity, (2) determine if any of these characteristics correlated with alcohol drinking observed in DAT+/+ and DAT+/- animals, and (3) determine if SIP-alcohol self-administration altered DAR sensitivity, DAT efficiency, and DAT capacity by comparing these characteristics in wildtype (DAT+/+) mice that were SIP-alcohol naïve, with those that had undergone SIP-alcohol testing. DAT-/- mice consumed significantly less alcohol during testing and this behavioral difference was related to significant differences in DAR sensitivity, DAT efficiency, and DAT capacity. These functional characteristics were correlated to varying degrees with g/kg alcohol consumption in DAT+/+ and DAT+/- mice. DAR sensitivity was consistently reduced and DAT efficiency was enhanced in SIP-alcohol experienced DAT+/+ mice in comparison to naïve animals. These results indicate that DAR sensitivity is reduced by SIP-alcohol consumption and that DAT efficiency is modified by genotype as well as SIP-alcohol exposure. DAT capacity appeared to be strictly associated with SIP-alcohol consumption.
Surgery, radiation, or hormone deprivation alone does not adequately affect local control of clinical or pathologic stage T3 prostate cancer. Lack of local cancer control ultimately leads to a higher incidence of morbidity, distant metastasis, and decreased survival, with patients having disease-specific mortality exceeding 75%. Other novel therapies against this devastating and common disease are needed for the achievement of long-term local cancer control. For this purpose, therapeutic interventions should target prostate-cancer cells at the molecular and cellular level in ways not possible by current modalities of cancer treatment. Any strategy that can modify the biologic behavior of these cells may potentially have the most significant clinical impact. As prostate cancer represents an accumulation of genetic mutations that causes a prostate cell to lose the ability to control its growth, one new approach against prostate cancer may be gene therapy. Identification of key missing or mutated tumor-suppressor genes that, when replaced, may inhibit or destroy prostate-cancer cells may have the best chance of clinical success. One such gene appears to be tumor-suppressor gene p16 (also known as MTS1, INK4A, and CDKN2). Tumor-suppressor gene p16 is an important negative cell-cycle regulator whose functional loss may significantly contribute to malignant transformation and progression. Alterations in the p16 gene and its protein expression often occur in prostate cancer. An adenoviral vector containing wild-type p16 (Adp16) had a high transduction efficiency in prostate-cancer cells both in vitro and in vivo. Moreover, prostate tumors injected with Adp16 expressed p16 and the adenoviral vector expressed the transgene for up to 14 days. Wild-type p16 inhibited prostate-cancer proliferation in vitro and markedly suppressed tumors in vivo. Pathologic evaluation of the Adp16-treated tumors showed dose-dependent necrosis and fibrosis. Although the mechanism of p16 inhibition in cancer remains to be elucidated, senescence and apoptosis may both be important; however, the data suggest that p16-induced growth inhibition can function independently of the retinoblastoma gene product.
A line of mutant mice (114-CH19) exhibiting white spotting and preweaning lethality was identified during an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. The trait segregated as a semidominant bellyspot with reduced penetrance. Homozygous mutant mice showed preweaning lethality, and exhibited white spotting over the majority of the body surface, with pigmented patches remaining around the pinnae, eyes and tail. Linkage analysis localized 114-CH19 on mouse chromosome 2, suggesting endothelin 3 (Edn3) as a candidate gene. Sequence analysis of Edn3 identified a G > A transversion that encodes an arginine to histidine substitution (R96H). This mutation is predicted to disrupt furin-mediated proteolytic cleavage of pro-endothelin that is necessary to form biologically active EDN3. This mutation is novel among human and mouse EDN3 mutants, is the first reported EDN3 ENU mutant, and is the second reported EDN3 point mutation. This study demonstrates the power of using ENU mutagenesis screens to generate new animal models of human disease, and expands the spectrum of EDN3 mutant alleles.
Background Diagnostic testing for bacterial etiology of community-acquired pneumonia (CAP) is insensitive. Induced sputum (IS) is an attractive option for the evaluation of the lower respiratory tract. Methods Children aged 0-18 years with CAP were enrolled in the Etiology of Pneumonia in the Community (EPIC) study between 2010 and 2012. Blood and respiratory specimens were assessed by culture and polymerase chain reaction (PCR). The radiographic CAP was determined by a study radiologist. Sputum was induced with hypertonic saline. IS specimen was high quality (HQ) if Gram stain showed >25 white blood and <10 epithelial cells per low-powered field; all others were low quality (LQ). We compared IS pathogen prevalence between HQ and LQ IS, and by radiographic pneumonia. Pathogen concordance with EPIC etiology was assessed. Length of stay (LOS) was compared by receipt of IS pathogen-concordant antibiotics. Results Out of 977 children, 916 (94%) children enrolled in Memphis, Tennessee, produced IS; 794 (87%) had radiographic CAP and 174 (19%) were HQ. HQ IS yielded pathogenic bacteria more often than LQ (64% vs 44%; P < .01); however, pathogens were isolated at similar rates in HQ IS in patients with and without radiographic CAP (64% vs. 63%; P = .6). Pathogens from study specimens matched an IS pathogen in only 9/42 (21%) patients with radiographic CAP. Median LOS was similar among patients with radiographic CAP regardless of receipt of IS pathogen-concordant antibiotics (3.1 days), non-pathogen-concordant antibiotics (2.7 days), or no antibiotics (3.2 days; P = .5). Conclusions Bacterial pathogens were isolated from most IS cultures regardless of radiographic CAP and quality of IS. IS cultures infrequently corresponded with sterile site cultures. Isolation of pathogens from pediatric IS reflects oropharyngeal carriage and is insufficient to determine bacterial etiology of CAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.