Background: Reports on the role of ceramide to regulate LPS signaling have been inconsistent; thus, we have investigated the role of ceramide metabolites to differentially regulate LPS signaling. Results: Ceramide-1-phosphate limits LPS-mediated NF-B activation, MAPK activation, and cytokine secretion. Conclusion: Ceramide-1-phosphate, but not ceramide, limits LPS signaling. Significance: Ceramide-1-phosphate may function as an anti-inflammatory lipid.
Background: Extracellular ceramide 1-phosphate is presumed to interact with extracellular proteins to mediate cellular invasion. These proteins are unidentified. Results: C-1-P interacts with both annexin a2 and p11 proteins. C-1-P-mediated vascular endothelial cell invasion requires expression of these proteins. Conclusion: Extracellular C-1-P mediates invasion via an interaction with the annexin a2-p11 heterotetramer. Significance: Gradients of C-1-P may guide vascular endothelial cell invasion during wound healing.
The opioid growth factor (OGF), [Met 5 ]-enkephalin, and OGF receptor (OGFr) form an inhibitory axis regulating the growth of human pancreatic cancer. This study examined whether overexpression of OGFr decreases the growth of pancreatic cells in vitro. MIA PaCa-2 cells were transfected with OGFr cDNA, and six clonal lines were examined for protein expression and function. OGFr binding assays revealed a 2.3-to 5.6-fold increase in binding capacity from wild-type (WT) and empty vector (EV) controls; binding affinity was comparable in all groups. OGFr protein expression, as measured by immunohistochemistry and Western blotting, was enhanced in clonal cell lines compared to controls. Doubling times of OGFr clonal lines were 47-91% longer than in the WT/EV groups for all but one clonal line. DNA synthesis of cells overexpressing OGFr was diminished from the WT/EV groups by 28-52%. Addition of exogenous OGF further reduced (14-31%) the cell growth of clonal lines, and the effects of exogenous OGF were receptor-mediated. Exposure of cells overexpressing OGFr to naltrexone increased the cell number by up to 9.4-fold. OGF was identified as the only opioid peptide to depress cell replication in the transfected cell lines. Neutralization of endogenous OGF with antibodies to this peptide elevated the cell number in clonal cell lines. These data identify OGFr at the molecular level as integral to regulating the cell replication of human pancreatic cancer, and support treatment modalities that amplify OGFr in order to decrease the growth of these neoplasias.
Abstract. The opioid growth factor (OGF) is a constitutively expressed negative growth regulator whose action is mediated by the OGF receptor (OGFr). The OGF-OGFr axis tonically regulates the growth of human squamous cell carcinoma of the head and neck (SCCHN). To examine the repercussions of amplifying OGFr in SCCHN, constructs were prepared to overexpress OGFr in SCC-1 cells; six clonal lines were examined. OGFr binding assays of clonal cells revealed a 2.4-to 8.4-fold increase in binding capacity compared to wild-type (WT) and empty vector (EV) controls; binding affinity was comparable in all groups. OGFr protein expression, as measured by quantitative immunohistochemistry and Western blotting, was increased in clonal cell lines compared to controls. Under standard growth conditions the cell number of the OGFr clonal lines was reduced by 11 to 68% from the WT group, and doubling times were 7 to 67% longer. Addition of exogenous OGF further reduced (8 to 37%) cell growth of the clonal lines. Depletion of endogenous OGF with antibodies to this peptide increased growth 2-fold in cells amplifying OGFr relative to increases of 32 and 34% for the WT and EV groups, respectively. DNA synthesis of cells overexpressing OGFr was reduced from the WT group by 46 to 75%. These data indicate that the OGF receptor is integral to cell replication of SCCHN, and support treatment modalities that amplify OGFr in order to decrease the growth of these neoplasias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.