Twist and shout: Coiled‐coil forming α‐helices are of great significance in understanding tertiary structural formation (the figure shows GCN4; an example of a parallel dimeric coiled coil), the design of new proteins, and the control of the oligomeric state. The apparent simplicity of coiled coils is misleading, and rules governing such features are far from fully established. Requirements for the specific pairings of helices during coiled‐coil formation are discussed, as are the peculiarities within such domains that give proteins their unique function. By taking advantage of our increasing understanding of this structural class, a growing number of biological and therapeutic applications are being sought.
Finally, and with wider implications, we have compiled a method for predicting interaction of parallel, dimeric coiled coils, using our T m data as a training set, and applying it to 59 bZIP proteins previously reported. Our algorithm, unlike others to date, accounts for helix propensity, which is found to be integral in coiled coil stability. Indeed, in applying the algorithm to these 59 2 bZIP interactions, we were able to correctly identify 92% of all strong interactions and 92% of all noninteracting pairs.bioinformatics ͉ protein design ͉ protein stability ͉ protein-protein interaction ͉ dominant negative T he dimeric transcription factor activator protein-1 (AP-1) comprises Jun, Fos, activating transcription factor, and musculoaponeurotic fibrosarcoma families. Chief mammalian cell AP-1 constituents, Jun and Fos, contain a transactivation domain, a basic region for recognizing a DNA consensus sequence and a leucine zipper [coiled coil (CC)] region (see Fig. 1). The latter, in dimerizing, permits the two basic domains to bind to their consensus sequence. Such transcription factors, known as basic-zipper or bZIP proteins, are found at the closing stages of mitogen-activated protein kinase signaling cascades (e.g., the RAS pathway). AP-1 is implicated in various cancers where it can become up-regulated or overexpressed (1), and has been shown to be important in cell growth initiation, with c-Jun and c-Fos identified as cellular counterparts to viral oncoproteins v-Jun and v-Fos, thus establishing their role in tumorigenesis (2). Indeed, they are central in numerous oncogenic pathways and could therefore be prime candidates in anticancer drug design. However, AP-1 can also have antiproliferative properties, depending on subunit composition, transcription level, posttranslational modification (e.g., phosphorylation), and interaction with other proteins (e.g., Jun N-terminal kinase); this is manifested by the preponderance of different AP-1 family members in different types of tissue cancer. . Alternative residue options were included at e and g positions, and were aimed at varying electrostatic attraction levels at the dimeric interface. Other alternative residues, largely taken from homologues (see key), were introduced to the library pool at the solvent exposed b, c, and f positions. Wild-type residues removed from libraries are struck through in green, newly introduced amino acids are marked red, and wildtype positions left in the library are marked blue. Library winner selections are circled green. Position c1 E (marked red) is for additional N-cap stability, whereas b3 Y assists with concentration determination. Capping motifs have also been added.
Alpha-synuclein (αS) is the major constituent of Lewy bodies and a pathogenic hallmark of all synucleinopathathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). All diseases are determined by αS aggregate deposition but can be separated into distinct pathological phenotypes and diagnostic criteria. Here we attempt to reinterpret the literature, particularly in terms of how αS structure may relate to pathology. We do so in the context of a rapidly evolving field, taking into account newly revealed structural information on both native and pathogenic forms of the αS protein, including recent solid state NMR and cryoEM fibril structures. We discuss how these new findings impact on current understanding of αS and PD, and where this information may direct the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.